Grinding mill modelling and Control: past, present and future

Ian Craig

Department of Electrical, Electronic and Computer Engineering

> University of Pretoria South Africa

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi

Pretoria

2

19th IFAC World Congress Cape Town, 24-29 Aug. 2014

www.ifac2014.org

& Western Cape

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - µ-synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

China's share of the world (1960-2011)*

* Worldbank, BP, UBS, Allan Gray Proprietary Limited

Key commodity prices (1999-2011)*

Long-term commodity prices (1800-2011)*

Adjusted by U.S. GDP deflator; shown as natural logarithm

^{*} BCA Research, Allan Gray Proprietary Limited

Why grinding mill control?

- Mineral processing processes make for challenging control problems:
 - Poor process models
 - Large (unmeasured) disturbances
 - Lack of on-line measurements
 - Difficult to establish quantitative economic control objectives
- Costly and energy intensive process
- Part of a team that introduced advanced process control to the grinding community
- Close links with industry

Chain of processes in mineral processing and metallurgical plants*

* Adapted from Hodouin, D., Journal of Process Control, 21 (2011), 211-225.

Cost of comminution

- Fifty percent of mineral processing operating cost associated with comminution (crushing and grinding)
- World wide cost of comminution*
 - Energy consumed =26 billion US\$/year
 - Wear parts consumed = 5 billion US\$/year
- Average energy consumption (kWh/t): 2.2 for crushing, 11.6 for grinding, and 2.6 for separation
- Typical breakdown of comminution costs*:

Explosive fracturing (1%)

Mineral processing steps*

* Adapted from Wills and Napier-Munn, Wills' Mineral Processing Technology (7e), 2005, Butterworth-Heinemann, p13.

Grinding circuit process variables*

* Adapted from Hodouin, D., Journal of Process Control, 21 (2011), 211-225.

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Grinding circuit models

- Mineral liberation is difficult to model due to complexity of:
 - naturally occurring mineralogical textures
 - the fracture processes that occur when the ore is crushed and ground
- Type of model depends on purpose
- Phenomenological model-based grinding circuit simulators are used for process design and optimization, and also training
- The population balance method of modelling provides a unifying framework
- Empirical LTI models used for model-based controller design
- "New" simplified phenomenological model used for controller design and analysis case studies

"Standard" phenomenological grinding circuit model I

- SAG mill process modelled by 35 state equations
- **Solids***: Accumulation = In Out + Generation Consumption

$$\frac{\partial s_i}{\partial t} = f_i - p_i + \sum_{j=1}^{i-1} r_j s_j a_{ij} - (1 - a_{ii}) r_i s_i , i = 1, \dots, 27; \qquad p_i = d_0 c_i s_i$$

Parameter	Description	Unit
S _i	mill rock charge particles in size i	tons
f_i	feedrate of particles in size i	tons/hour
<i>p</i> _i	mill discharge of particles in size i	tons/hour
d_0	maximum mill discharge rate constant	hour ⁻¹
C _i	grate classification function for size i	fraction
r _i	breakage rate of particles in size i	hour-1
a _{ij}	appearance function describing the amount of material selected for breakage and the distribution of material after breakage occurred	fraction

* Napier-Munn et al., JKMRC, 1996.

"Standard" phenomenological grinding circuit model II

Generation term:

$$\sum_{j=1}^{i-1} r_j s_j a_{ij} \qquad i = 1, \dots, 27$$

Summation of the product of the rock charge mass in the size fractions above size i, $s_{\rm j}$, and their respective breakage rates, $r_{\rm j}$, and the fraction appearing into size i from the breakage occurring above, $a_{\rm ii}$, results in the generation term for size i.

Consumption term: $(1-a_{ii})r_is_i$ $i=1,\ldots,27$

The appearance function, a_{ij} is in a mass fraction retained format, therefore the diagonal of the appearance function, a_{ii} , indicates (by difference) how much of the material in a given size is broken and distributed into the size fractions below.

 $r_i = f(\text{equipment parameters, operating conditions})$

 $a_{ij} = f$ (ore characteristics, operating conditions)

^{*} Apelt et al, *Minerals Engineering*, 15, (2002), 1043-1053.

"Standard" phenomenological grinding circuit model* III

<u>Water</u> $\frac{\partial s_w}{\partial t} = f_w - p_w; p_w$	$p_w = d_o s_w$ <u>Balls</u>	$\frac{\partial b_{ci}}{\partial t} = b_i - b_{ei} + b_{wi-1} - b_{wi}; i = 1, \dots, 7$
--	------------------------------	--

Parameter	Description	Unit
S _w	Mill water charge	tons
f _w	Mill water feedrate	tons/hour
<i>p</i> _w	mill water discharge rate	tons/hour
d _o	maximum mill discharge rate constant	hour ⁻¹
b _{ci}	Mill ball charge for balls in size i	tons
b _i	Mill ball feedrate for balls in size i	tons/hour
b _{ei}	Mill ball charge ejection rate for balls in size i	tons/hour
b _{wi}	Mill ball charge wear rate balls out of size i into size i+1	tons/hour

* Apelt et al, *Minerals Engineering*, 15, (2002), 1043-1053.

Simplified grinding circuit model* I

Model has 4 modules

- Feeder, mill, sump, hydrocyclone
- Modularized structure allows for arbitrary circuit configurations

• Nonlinear SAG mill model with 5 states

- Water, Solids, Fines, Rocks, Balls
- Solids: Consists of Coarse ((+) out-of-specification) and Fines ((-) in-specification) material.
- Fines < 75µm (milling circuit product)
- Solids < Discharge grate size < Rocks
- Generation & consumption terms include effects of:
 - Slurry rheology and Mill power
- Hydrocyclone module
 - Empirical and algebraic model

5 mill state equations

$$\frac{\partial X_{mw}}{\partial t} = V_{mwi} - V_{mwo}$$
$$\frac{\partial X_{ms}}{\partial t} = V_{msi} - V_{mso} + RC$$

$$\frac{\partial X_{mf}}{\partial t} = V_{mfi} - V_{mfo} + FP$$

$$\frac{\partial X_{mr}}{\partial t} = V_{mri} - RC$$
$$\frac{\partial X_{mb}}{\partial t} = V_{mbi} - BC$$

Simplified grinding circuit model* II

	Description	Unit
X _{mw}	Holdup of water in the mill	m ³
X _{ms}	Holdup of solids in the mill	m ³
X _{mf}	Holdup of fines in the mill	m ³
X _{mr}	Holdup of rocks in the mill	m ³
X _{mb}	Holdup of balls in the mill	m ³
V _{mxi or o}	Flow-rate of water/solids/ balls in to/out of the mill	m³/ hour
RC	Rock consumption	m³/ hour
FP	Fines produced	m³/ hour

Simplified grinding circuit model* III

Rock Consumption:
$$RC = \frac{P_{mill}\varphi}{D_s\phi_r} \left(\frac{X_{mr}}{X_{mr} + X_{ms}} \right)$$

FP

Fines Production:

$$= \frac{P_{mill}}{D_s \phi_f \left\{ 1 + \alpha_{\phi_f} \left(\frac{X_{mw} + X_{mr} + X_{ms} + X_{mb}}{v_{mill}} - v_{P_{max}} \right) \right\}}$$

D

Ball Consumption:
$$BC = \frac{P_{mill}\varphi}{D_b\phi_b} \left(\frac{X_{mb}}{X_{mr} + X_{ms} + X_{mb}} \right)$$

Empirical grinding circuit models I

- Properties available in simulators such as ore grindability, slurry rheology, grinding media size distribution are not measured on-line and are impossible/very difficult to infer from other measurements
- Plant models for model-based controller design are therefore typically LTI models obtained from plant identification tests, e.g. (time constants in seconds)*

$$\begin{bmatrix} \Delta \text{Product size} \\ \Delta \text{Mill load} \\ \Delta \text{Sump level} \end{bmatrix} = \begin{bmatrix} \frac{0.105}{83s+1} & e^{-65s} & \frac{-0.082}{1766s+1} & e^{-80s} & \frac{-0.0575}{167s+1} & e^{-460s} \\ \frac{-0.0468}{1864s+1} & e^{-140s} & \frac{0.000122}{s} & \frac{0.115}{1981s+1} & e^{-120s} \\ \frac{0.00253}{s} & 0 & \frac{-0.00299}{s} \end{bmatrix} \Delta \text{Mill feed solids}$$

* Craig and MacLeod, Control Engineering Practice, 3, (1995), 621-630.

Empirical grinding circuit models II

- Empirical LTI models can be very tedious to obtain:
 - Repeated tests to cover a suitable range of operating conditions
 - Tests can take a long time because of slow plant dynamics
 - Frequent plant stoppages and equipment failure
 - Large uncertainties associated with some transfer function parameters (parameter standard deviation in %)*:

$$g_{ij} = \frac{k_{ij}}{\tau_{ij}s+1} e^{-\theta_{ij}s}$$
 or $g_{ij} = \frac{k_{ij}}{s} e^{-\theta_{ij}s}$

$$k_{ij}:\begin{bmatrix}35\% & 14\% & 31\%\\ 16\% & 11\% & 65\%\\ 0\% & 0\% & 0\%\end{bmatrix} \quad \tau_{ij}:\begin{bmatrix}19\% & 0\% & 18\%\\ 60\% & 0\% & 40\%\\ 0\% & 0\% & 0\%\end{bmatrix} \quad \theta_{ij}:\begin{bmatrix}0\% & 0\% & 27\%\\ 43\% & 0\% & 0\%\\ 0\% & 0\% & 0\%\end{bmatrix}$$

* Craig and MacLeod, Control Engineering Practice, 3, (1995), 621-630.

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Milling control literature: Historical development

Grinding mill control: Adopted control technologies*

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Grinding circuit control objectives

- Stabilize the circuit
 - Mill load and Sump level are open-loop unstable as they act as flow integrators
- Improve product <u>quality</u> (particle size)
 - Maintain particle size setpoint at value determined by the subsequent <u>separation process</u>
 - Decrease particle size variance
- Maximise <u>throughput</u> given the desired particle size setpoint
- Circuit control objective can also be formulated as an objective function to be optimised:
 - Throughput or recovery maximization at a constant grade
 - Net revenue maximization using net smelter return (NSR)
 - Constraints on input, output and other process variables should also be considered

Quality/throughput trade-off

Improvement through better product quality control

Improve product <u>quality</u> (particle size) control via variance reduction and subsequent optimization:

- Average μ can be shifted closer to constraint x_1 by $\Delta \mu$
- f(x): pdf of process variable x (e.g. particle size)

Separation process and particle size setpoint selection I

- Leaching as downstream separation process
- Economic benefit obtained from reducing grind variations
- Residue-Particle size relationship*
 - Residue: (g/t) of metal not recovered
- The finer the grind the better
 - Size constrained by throughput and operating costs

Separation process and particle size setpoint selection II

- Flotation as downstream separation process
- The optimum grind size of the ore is the particle size at which the most economic recovery can be obtained
 - Depends not only on the grindability of the ore but also on its floatability.
 - \$ improvement from both variance reduction and better setpoint*
- Recovery Particle size relationship

* Craig and Koch, Control Engineering Practice, 11, (2003), 57-66.

Maximising throughput

- Maximise <u>throughput</u> given desired product size
- Assumption: Throughput is maximised when maximum power is drawn from mill motor
- Power is quadratic in total load volume so optimise Load setpoint for maximum power draw

* Craig et al, J.S. Afr. Inst. Min. Metall., 92, (1992), 169-176.

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Grinding circuit control loop*

Real-time optimization (RTO)

Control example: µ-synthesis I

- Model uncertainties are represented by multiplicative and inverse multiplicative norm-bounded perturbations and frequency dependent weighting functions
- Example of an inverse multiplicative uncertainty description:
 - Time constant that are dependent directly on the rheology of the slurry inside the mill are correlated and can be grouped together
 - Load/Sum water feed rate and Load/Cyclone feed rate time constants are similar to the hold-up time of the mill and can be combined

* Craig and MacLeod, Control Engineering Practice, 3, (1995), 621-630.

Control example: µ-synthesis II

- Gain (k_{ij}) and gain and time delay $(k_{ij} \text{ and } \theta_{ij})$ uncertainties represented as multiplicative
- Time constant (τ_{ij}) uncertainties represented as inverse-multiplicative

$$g_{ij} = \frac{k_{ij}}{\tau_{ij}s+1} e^{-\theta_{ij}s}$$
 or $g_{ij} = \frac{k_{ij}}{s} e^{-\theta_{ij}s}$

$$k_{ij}:\begin{bmatrix} 35\% & 14\% & 31\% \\ 16\% & 11\% & 65\% \\ 0\% & 0\% & 0\% \end{bmatrix} \quad \tau_{ij}:\begin{bmatrix} 19\% & 0\% & 18\% \\ 60\% & 0\% & 40\% \\ 0\% & 0\% & 0\% \end{bmatrix} \quad \theta_{ij}:\begin{bmatrix} 0\% & 0\% & 27\% \\ 43\% & 0\% & 0\% \\ 0\% & 0\% & 0\% \end{bmatrix}$$

* Craig and MacLeod, Control Engineering Practice, 3, (1995), 621-630.

Control example: µ-synthesis III

Control example: µ-synthesis IV

- Convert specifications to performance weights W_u and W_v
- General configuration for controller synthesis

* Craig and MacLeod, Control Engineering Practice, 3, (1995), 621-630.

Control example: µ-synthesis V

Plant trial

* Craig and MacLeod, Control Engineering Practice, 4, (1996), 1-12.

Control example: Robust non-linear MPC I

- Design a robust nonlinear model predictive controller
 - Explicitly incorporate uncertainty in design
 - Deal with simplified nonlinear grinding circuit model without approximation

• Nonlinear MPC is robustified to parameter uncertainty

- Calculate worst-case objective and the constraint functions by maximizing these functions with regard to the model parameter sequence and state values
- The worst case objective function is then minimized by choosing the control moves subject to the worst-case constraints
- Min-max optimization problem converted to an easier to solve minimization problem using an approximate robust counterpart formulation

Control example: Robust non-linear MPC II

- Verify RNMPC through simulation study
- Plant disturbances
 - Feed ore hardness change: increase energy needed to produce a ton of fines by 50% at time 10 minutes
 - Feed ore composition change: increasing the fraction of the feed consisting of rock by 50% at time 100 minutes
 - These disturbances are very large but not uncommon in practice
- Strong points: Good disturbance rejection and constraint satisfaction in the face of large disturbances
- Drawbacks
 - Computational time longer than required sampling time
 - Full-state feedback assumed

Control example: Robust non-linear MPC III

Parameter uncertainty description

$$P_{box} = \left\{ p \in R^{n_p} \middle| p_l \le p \le p_u \right\} = \left\{ p \in R^{n_p} \middle| \left\| \operatorname{diag} \left(\frac{p_u - p_l}{2} \right)^{-1} \left(p - \frac{p_l - p_u}{2} \right) \right\|_{\infty} \le 1 \right\}$$

Parameter (p)	Min=p _l	Max=p _u	Description
α _f	0.05	0.15	Fraction of fines in the ore [dimensionless]
α _r	0.05	0.15	Fraction of rock in the ore [dimensionless]
φ _f	14	42	Energy needed for a ton of fines produced [kWh/t]
φ _r	55	83	Rock abrasion factor [kWh/t]
φ _b	89	99	Steel abrasion factor [kWh/t]

Robust non-linear MPC IV

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

* Adapted from Hodouin, D., Journal of Process Control, 21 (2011), 211-225.

Current projects

- Parameter estimation and disturbance observer design
 - Olivier, L.E., Huang, B., and Craig, I.K., Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill, *Journal of Process Control*, Vol. 22, No. 4, 2012, pp. 710-717.
 - Olivier, L.E., Craig, I.K., and Y.Q. Chen, Fractional Order and BICO Disturbance Observers for a Run-of-Mine Ore Milling Circuit, *Journal* of Process Control, Vol. 22, No. 1, 2012, pp. 3-10.

Model analysis and verification

- Le Roux, D.J., and Craig, I.K., Identifiability of run-of-mine ore grinding mill circuit parameters, 10th IEEE Region 8 AFRICON, Zambia, 13-15 Sep., 2011.
- Le Roux, D.J., Craig, I.K., Hulbert, D.G., and A.L. Hinde, Analysis and validation of a run-of-mine ore grinding mill circuit model for process control, submitted to *Minerals Engineering*.

Contents

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - μ -synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Future research challenges*

- Energy efficiency
 - More holistic perspectives on energy use and emissions reduction in industrial processes, including minerals processing, is required
- Very-Large-Scale Integrated Process Control (VLSIPC)
 - Use of economic-performance-optimizing MPCs in the form of dynamic real-time optimization (D-RTO).
 - Integration of mining, and mineral and metal extraction processes
- Generating good process models at low cost by e.g. easing the modelling effort
- Development of a practical high-fidelity milling circuit observer

Conclusions

- The big picture for commodity prices
- Why study grinding mill control?
- Mineral processing and grinding process overview
- Grinding circuit modelling
 - Simplified grinding circuit model for control studies
- History and current status of grinding mill control
- Grinding circuit control objectives
- Control examples:
 - µ-synthesis
 - Robust nonlinear MPC
- Current research projects
- Future research challenges

Acknowledgements

- YangQuang Chen (Utah State, Logan, UT)
- Loutjie Coetzee (Mintek, South Africa)
- Adrain Hinde (AH Consulting)
- Biao Huang (University of Alberta)
- Dave Hulbert (Mintek, South Africa)
- Derik Le Roux (University of Pretoria)
- Bjorn Matthews (University of Pretoria)
- Myrin Naidoo (University of Pretoria)
- Laurentz Olivier (University of Pretoria)