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Abstract: In this paper, finite-time globally asymptotical stability in probability (FTGASiP) and finite-time stochastic input-to-
state stability (FTSISS) for stochastic nonlinear (SNL) systems are investigated. For the study of FTGASiP, there is a generalized
KL (GKL) function in the definition which we considered. Correspondingly, based on this definition, some sufficient conditions
are provided for SNL systems. Further more, the definition of FTSISS is introduced and corresponding criterion is presented for
SNL systems. To prove the results of the above, some lemmas about GKL functions and their properties are provided. Finally,
some simulation examples are given to demonstrate the effectiveness of our results.
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1 Introduction

Since the performance of a real control system is affected
more or less by uncertainties such as unmodelled dynam-
ics, parameter perturbations, exogenous disturbances, mea-
surement errors etc., the research on robustness of control
systems do always have a vital status in the development
of control theory and technology. Aiming at robustness
analysis of nonlinear control systems, a new method from
the point of view of input-to-state stability (ISS), input-
to-output stability (IOS) and integral input-to-state stabil-
ity (iISS) are developed and a series of fundamental results
centralizing on the theory of ISS-, IOS-Lyapunov functions
are obtained by many scholars, Sontag, Wang and Lin, etc
[13, 15, 16, 17, 18, 9, 10, 11, 1, 8]. ISS focuses on the
design of smooth controllers to tackle stabilization of vari-
ous classes of nonlinear systems or their robust and adaptive
control in the presence of various uncertainties arising from
control engineering applications.

On the other hand, non-smooth (including discontinuous
and continuous but not Lipschitz continuous) control ap-
proaches have drawn increasing attention in nonlinear con-
trol system design. One of the main benefits of the non-
smooth finite-time control strategy is that it can force a con-
trol system to reach a desirable target in finite time. This
approach was first studied in the literature of optimal con-
trol. In recent years, finite-time ISS and its’s applications to
finite-time controller design have been considered in many
literatures [7, 5, 6, 19]. But, for stochastic systems, these
problems have not been studied.

From the definition of finite-time input-to-state stability
(FTISS), we can find that, if the input u = 0, an FTISS sys-
tem is necessarily finite-time GAS. So, the study of finite-
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time GAS is very helpful to the study of FTISS. In [2, 3, 20],
the definition of finite-time globally asymptotical stability in
probability (FTGASiP) is provided and some criteria have
been given. But, in [2, 3, 20], the definition of FTGASiP is
defined in the form of stability in probability plus attractivity
in probability. But, for study the FTSISS of stochastic sys-
tems, a definition of FTGASiP in the form of GKL function
(|x| ≤ β(|x0|, t), where x is the system state and x0 is the
initial value and β is a GKL function) is needed. The defi-
nition of this form is much more elegant and easier to work
with.

In this paper, the FTGASiP and FTSISS will be consid-
ered for SNL systems, and the definition of FTGASiP and
FTSISS are both in the form of GKL function. Firstly, we
provide some lemmas to make the proof of our main results
easier. Then, the criteria on FTGASiP and FTSISS are pro-
vided. To illustrate the effectiveness of our main results,
some simulation examples will be given at the last.

The remainder of this paper is organized as following:
Section 2 provides some notations and introduces the defini-
tions of FTGASiP, FTSISS and FTSISS-Lyapunov function.
Section 3 investigates the FTGASiP and FTSISS property of
SNL. In section 4, some simulation examples are provided
to illustrate the results. Section 5 includes some concluding
remarks.

2 Notations and preliminary results

Throughout this paper, R+ denotes the set of all nonneg-
ative real numbers; Rn and Rn×m denote, respectively, n-
dimensional real space and n × m dimensional real matrix
space. For vector x ∈ Rn, |x| denotes the Euclidean norm
|x| = (

∑n
i=1 x2

i )
1/2. All the vectors are column vectors un-

less otherwise specified. The transpose of vectors and ma-
trices are denoted by superscript T . C([−µ, 0];Rn) denotes
continuous Rn-valued function space defined on [−µ, 0]; Ci

denotes all the ith continuous differential functions; Ci,k de-
notes all the functions with ith continuously differentiable
first component and kth continuously differentiable second
component. E(x) denotes the expectation of stochastic vari-
able x. The composition of two functions ϕ : A → B and



ψ : B → C is denoted by ψ ◦ ϕ : A → C.
A function ϕ(u) is said to belong to the class K if ϕ ∈

C(R+,R+), ϕ(0) = 0 and ϕ(u) is strictly increasing in u.
K∞ is the subset ofK functions that are unbounded. A func-
tion β : R+ ×R+ → R+ is of class KL, if β(·, t) is of class
K in the first argument for each fixed t ≥ 0 and β(s, t) de-
creases to 0 as t → +∞ for each fixed s ≥ 0.

A function h : R+ → R+ is said to belong to the class
generalized K (GK) if it is continuous with h(0) = 0, and
satisfies

{
h(r1) > h(r2), if h(r1) 6= 0;
h(r1) = h(r2) = 0, if h(r1) = 0, ∀ r1 > r2. (1)

Note that a class GK function is a (conventional) class K
function, which is defined as a continuous and strictly in-
creasing function with h(0) = 0 because a strictly increasing
function satisfies (1). A function β : R+ × R+ → R+ is of
class generalized KL function (GKL function) if, for each
fixed t ≥ 0, the function β(s, t) is a generalized K-function,
and for each fixed s ≥ 0 it decreases to zero as t → T for
some T ≤ ∞.

Consider the following n-dimensional SNL system

dx = f(t, x, u)dt + g(t, x, u)dw, t ≥ t0, (2)

where x ∈ Rn and u ∈ Lm
∞ are system state and input,

respectively; Lm
∞ denotes the set of all the measurable and

locally essentially bounded input u ∈ Rm on [t0,∞) with
norm

‖u‖ = sup
t≥t0

inf
A⊂Ω,P (A)=0

sup{|u(t, ω))| : ω ∈ Ω\A}. (3)

w(t) is an r-dimensional Brownian motion defined on the
complete probability space (Ω,F , {Ft}t≥t0 , P ), with Ω be-
ing a sample space, F being a σ-field, {Ft}t≥t0 being a fil-
tration and P being a probability measure. f : [t0,∞) ×
Rn × Rm → Rn, g : [t0,∞) × Rn × Rm → Rr are
continuous and satisfies f(·, 0, 0) = g(·, 0, 0) ≡ 0. More-
over, system (2) is assumed to has a pathwise unique strong
solution[12], denoted by x(t, t0, x0), t0 ≤ t < +∞, for any
given x0 ∈ Rn.

For convenience, we denote the the system (2) with input
u = 0 as follows

dx = f(t, x)dt + g(t, x)dw, t ≥ t0, (4)

and introduce some corresponding definitions on FTGASiP
and FTSISS.

Definition 2.1 (Stochastic Settling Time Function). For
system (2), define T0(t0, x0, w) = inf{T ≥ 0 :
x(t, t0, x0) = 0, ∀ t ≥ t0 + T}, which is called the stochas-
tic settling time function. Especially, T0(t0, x0, w) =: +∞
if x(t, t0, x0) 6= 0, ∀ t ≥ t0.

Definition 2.2 The equilibrium x = 0 of the system (4) is
finite-time globally asymptotically stable in probability (FT-
GASiP) if for any ε > 0 there exists a class GKL function
β(·, ·) such that

P{|x(t)| < β(|x0|, t− t0)} ≥ 1− ε,

∀ t ≥ t0,∀x0 ∈ Rn\{0}.

Remark 2.1 The deterministic definition of GAS [13] is
of course equivalent to the usual one (stability plus attractiv-
ity) and is much more elegant and easier to work with. But,
for stochastic case, due to the dependence of events, they are
not equivalent any more. In [4], the definition of GASiP was
given in the form of stability plus attractivity. Here, using
the GKL function, we give the definition of FTGASiP. The
corresponding criterion will also be given in the following.

Definition 2.3 System (2) is said to be finite-time stochas-
tic input-to-state stable (FTSISS), if for any ε > 0, there exist
functions β ∈ GKL and γ ∈ K such that

P{|x(t)| < β(|x0|, t− t0) + γ(‖u‖)} ≥ 1− ε,

∀ t ≥ t0, ∀ x0 ∈ Rn \ {0}.

Remark 2.2 Similar to the explanation of the relation of
ISS and GAS in [14], FTSISS says basically that for bounded
initial state and control, a trajectory that bounded in prob-
ability results, and further (since β decays to zero at finite
stochastic settling time) that the state is bounded in probabil-
ity by a function of the control alone after the finite stochas-
tic settling time (and this bound is small if the control is
small). This is much stronger than that asking GASiP plus
”bounded-point bounded-state” stability.

Definition 2.4 For system (2), a function V (t, x) ∈
C1,2([t0,∞)×Rn;R+) is called an FTSISS-Lyapunov func-
tion, if there exist functions α1, α2 ∈ K∞, α, χ ∈ K such
that, α(V ) ∼ V (t, x)a for some positive constant a < 1, for
all x ∈ Rn, u ∈ Rm and t ≥ t0,

α1(|x|) ≤ V (t, x) ≤ α2(|x|), (5)
|x| ≥ χ(‖u‖) ⇒
LV (t, x) = ∂V (t,x)

∂t + ∂V (t,x)
∂x f(t, x, v)

+ 1
2 trace{gT (t, x)∂2V (t,x)

∂x2 g(t, x)} ≤ −α(V ), (6)

where L is infinitesimal generator. For short, they will be
denoted as (V ;α1, α2, α, χ).

3 Main results

In this section, the criteria on FTGASiP and FTSISS will
be given. Firstly, some useful lemmas will be provided as
follows.

Lemma 3.1 Assume that α(·) : R → R and β(·, ·) :
[t0,+∞) × Rn → R are two smooth functions, and x(t) is
the solution of system (2), then the following equation holds.

L[α(β(t, x))]=
dα

dβ
L[β(t, x)]+

1
2

d2α

dβ2
Tr

[(
∂β

∂x
g

)T (
∂β

∂x
g

)]



Proof. Using the definition of the infinitesimal generator
in (6),

L[α(β(t, x))]

=
dα

dβ

∂β

∂t
+

dα

dβ

∂β

∂x
f(t, x)

+
1
2
Tr

[
gT

(
d2α

dβ2
(
∂β

∂x
)T ∂β

∂x
+

dα

dβ

∂2β

∂x2

)
g

]

=
dα

dβ

[
∂β

∂t
+

∂β

∂x
f(t, x) +

1
2
Tr

[
gT

(
∂2β

∂x2

)
g

]]

+
1
2

d2α

dβ2
Tr

[(
∂β

∂x
g

)T (
∂β

∂x
g

)]

=
dα

dβ
L[β(t, x)] +

1
2

d2α

dβ2
Tr

[(
∂β

∂x
g

)T (
∂β

∂x
g

)]
.

Remark 3.1 Lemma 3.1 is a natural generalization of
Lemma 2 in [2, 3].

Lemma 3.2 Let η(r) =
∫ r

0
1

h(v)dv, r ∈ [0,+∞), with
h ∈ K and such that η(r) < +∞, and define

β(r, s) =





0, r = 0, s ≥ 0;
0, r 6= 0, s ≥ η(r);
η(r)− s, r 6= 0, s < η(r).

(7)

Then, the function β(r, s) is of class GKL.

Proof. Let

0 < a = lim
r→∞

η(r) < +∞.

From the definition of η and h ∈ K, we can get that η(0) =
0, η ∈ K and η−1 can be defined, where η−1 denotes the
inverse of η. The range of η, i.e. the definition domain of
η−1 is [0, a). Because η is continuous, the function β(r, s)
is continuous. Further, for fixed s ∈ [0,+∞), if s ≥ a, then,
it’s obviously that β(·, s) ≡ 0 ∈ GK; if s < a, we can find
that

β(r, s) =
{

0, when r ≤ η−1(s);
η(r)− s, when r > η−1(s).

So, β(0, s) = 0, and for any r1 > r2,
{

β(r1, s) > β(r2, s), if β(r1, s) 6= 0;
β(r1, s) = β(r2, s) = 0, if β(r1, s) = 0.

So, for every fixed s, β(·, s) satisfies (1) and is a GK func-
tion.

On the other hand, for every fixed r, β(r, ·) decreases to
zero as s → η(r) (η(r) < +∞). So, β ∈ GKL. This
completes the proof.

Lemma 3.3 Let α1 and α2 be class K functions on
[0, a), (a ≤ +∞), and β be a class GKL function. Then
σ(r, s) = α1(β(α2(r), s)) belongs to class GKL.

Remark 3.2 Lemma 3.3 is a generalization to the last
conclusion of Lemma 3.2 in (Khalil, 1996). From the mono-
tonicity of the functions in Lemma 3.3, the proof of Lemma
3.3 is easy. Here, we omit it.

Now, based on the above lemmas on the infinitesimal gen-
erator, GKL function and its properties, the criteria on FT-
GASiP and FTSISS will be provided.

Theorem 3.1 Consider the system (4) and suppose the
pathwise uniqueness be satisfied, and there exists a C1×2

function V : [t0,+∞) × Rn → R+, class K∞ functions
α1, and a continuous differentiable h : R+ → R+ such that
for all x ∈ Rn, t ≥ t0,

(i) V (t, x) ≥ α1(|x|) (8)
(ii) LV (t, x) ≤ −h(V (t, x)), (9)

(iii)
∫ ε

0

1
h(v)

dv < +∞,∀ ε ∈ [0,+∞),

(iv) h′(v) > 0, ∀ v > 0,

then the origin of system (4) is FTGASiP, and the set-
tling time function T0(t0, x0, ω) satisfies E[T0(t0, x0, ω)] ≤∫ V0

0
1

h(v)dv, where V0 = V (t0, x0), which implies
T0(t0, x0, ω) < +∞ a.s.

Proof. Condition (iii) implies that there exists
∫ V

0
1

r(v)dv.

For convenience, we define a function η(V ) =
∫ V

0
1

h(v)dv,
V ∈ [0,∞). Applying Itô formula along with system (4),
for all t ≥ t0

η(V (t, x(t))) = η(V (t0, x0)) +
∫ t

t0

Lη(V (s, x(s)))ds

+
∫ t

t0

dη

dV

∂V

∂x
g(x)dw. (10)

If t is replaced by tr = min{t, τr} in the above, where
τr = inf{s ≥ 0 : |x(s)| ≥ r}, then the stochastic in-
tegral(second integral) in (10) defines a martingale (with r
fixed and t varying), not just a local martingale. Thus, on
taking expectations in (10) with tr in place of t, we obtain

E[η(V (tr, x(tr)))] = η(V (x0)) + E[
∫ tr

t0

Lη(V (s, x(s)))ds]

On letting r → ∞ and using Fatou’s lemma on the left and
monotone convergence on the right, we obtain

E[η(V (t, x(t)))] = η(V (t0, x0)) + E[
∫ t

t0

Lη(V (s, x(s)))ds]

From condition (ii) and (iv), we have that, when h(V ) 6= 0,
i.e. V 6= 0,

Lη(V (t, x(t))) ≤ −1 (11)

When V = 0, due to the positive definiteness of V , and
condition (ii), we have V ≡ 0. Let

β̃(r, s) =





0, r = 0, s ≥ 0;
0, r 6= 0, s ≥ η(r);
η(r)− s, r 6= 0, s < η(r).

Then

E[η(V (t, x(t)))] ≤ β̃(V0, t− t0), ∀ t ≥ t0,



where V0 = V (t0, x0) and β̃ ∈ GKL can be known from
Lemma 3.2. For any ε ∈ (0, 1), take β̄ = β̃

ε . The function β̄

is the composition of α(s) = 1
εs ∈ K and β̃. From Lemma

3.3, β̄ ∈ GKL. Using the Chebyshev’s inequality and the
above inequality, we have for any t ∈ [t0,∞),

P{η(V (t, x)) ≥ β̄(V0, t− t0)} ≤ E[η(V (t, x))]
β̄(V0, t− t0)

< ε.

Define β(r, s) = α−1
1 ◦ η−1 ◦ β̄(α2(r), s). By (8),

P{|x(t)| < β(|x0|, t− t0)} ≥ 1− ε, ∀ t ∈ [t0,∞), (12)

where β(r, s) ∈ GKL can be known from Lemma 3.3. So,
system (4) is FTGASiP.

Next, we prove that E[T0(t0, x0, ω)] < +∞. From (11),
we have

E[η(V (t0 + T0(t0, x0, ω), x(t0 + T0(t0, x0, ω))))]
−E[η(V0)] ≤ −(E[t0 + T0(t0, x0, ω)]− t0).

From the definition of T0(t0, x0, ω) and condition (iii), we
get

E[T0(t0, x0, ω)] ≤ E[η(V0)] = η(V0) < +∞,

which obviously implies T0(t0, x0, ω) < +∞ a.s. This com-
pletes the proof.

Remark 3.3 Theorem 3.1 is similar to the Theorem 1 in
[2, 3]. Both of them are on the criteria of finite-time stability
of SNL systems. But there are two obvious different points:
1) the system (4) which we considered is non autonomous,
while the system (1) in [2, 3] is autonomous; 2) there is
a GKL function in the proof of our Theorem 3.1 and cor-
responding Definition 2.3, which means that the FTGASiP
problem is considered quantitatively; while, in [2, 3], the
same problem is considered qualitatively.

Remark 3.4 In Theorem 3.1, V (t, x) ≥ α1(|x|) means
that the the Lyapunov function V (t, x) is radially un-
bounded, which makes the origin of system (4) is finite-
time ”globally” asymptotically stable in probability (FT-
GASiP). Moreover, if there exists a K∞ function α2 such
that V (t, x) ≤ α2(|x|), which means that V is decrescent.
Then, the origin of system (4) is finite-time globally ”uni-
formly” asymptotically stable in probability (FTGUASiP).
The stochastic settling time T0(t0, x0, ω) uniformly satisfies
E[T0(t0, x0, ω)] ≤ η(α2(|x0|)) < +∞ on t0.

Corollary 3.1 Consider the system (4), if the conditions
(i) and (ii) in Theorem 3.1 hold and the function h in (9)
equals to k(V (t, x))ρ, where k > 0 and 0 < ρ < 1 are real
numbers, i.e.

(ii′) LV (t, x) ≤ −k(V (t, x))ρ. (13)

Then, the origin of system (4) is FTGASiP, and
E[T0(t0, x0, ω)] ≤ (V0)

1−ρ

k(1−ρ) , which implies T0(t0, x0, ω) <
+∞ a.s.

Proof. From the inequality (13), we let the function h in
Theorem 3.1 is defined as h((v) = kvρ, where k > 0 and

0 < ρ < 1 are real numbers. It’s obvious that the function h
is continuous differentiable. For any ε ∈ [0,+∞),

∫ ε

0

1
kvρ

dv =
ε1−ρ

k(1− ρ)
< +∞.

For any v > 0, h′(v) = kρv1−ρ > 0. So, the conditions (iii)
and (iv) in Theorem 3.1 is satisfied. From Theorem 3.1, the
origin system (4) is FTGASiP. Moreover, E[T0(t0, x0, ω)] ≤
η(V0) ≤ (V0)

1−ρ

k(1−ρ) , which implies T0(t0, x0, ω) < +∞ a.s.
The following theorem is on the criterion of FTSISS of

SNL systems.

Theorem 3.2 The system (2) is FTSISS if there exists a
FTSISS-Lyapunov function (V ;α1, α2, α, χ).

Proof. Let τ ∈ [t0,∞) denote a time at which the tra-
jectory enters the set B = {x ∈ Rn : |x| < χ(‖u‖)} for
the first time. Let us complete the proof by considering the
following two cases: x0 ∈ Bc and x0 ∈ B\{0}, respectively.

Case 1. x0 ∈ Bc. In this case, for any t ∈ [t0, τ ], |x(t)| >
χ(‖u‖). From (6), we have

LV (t, x) ≤ −α(V ).

According to Theorem 3.1 and Corollary 3.1, for any ε′ > 0,
there exists a class GKL function β, such that

P{|x(t)| < β(|x0|, t− t0)} ≥ 1− ε′, (14)
∀ t ∈ [t0, τ ],∀x0 ∈ Rn\{0},

and the settling time function T0(t0, x0, ω) satisfies
E[T0(t0, x0, ω)] ≤ ∫ α2(|x0|)

0
1

α(v)dv, which implies
T0(t0, x0, ω) < +∞ a.s. Let us now turn our attention to
the interval t ∈ (τ,∞). Since

d

dt
{E[V (t, x)]} = E[LV (t, x)],

which is negative for x(t) outside the set {x ∈ Rn : |x| ≤
χ(‖u‖)} ⊆ {x ∈ Rn : V (x, t) ≤ α2(χ(‖u‖))}, we have

E[V (t, x)] ≤ α2(χ(‖u‖)), ∀ t ≥ τ.

By Chebyshev’s inequality, it follows that

P{ sup
t∈[τ,∞)

V (t, x) ≥ δ(α2(χ(‖u‖)))}

≤ α2(χ(‖u‖))
δ(α2(χ(‖u‖))) ≤ ε′′,

where ε′′ can be made arbitrarily small by an appropriate
choice of δ ∈ K∞. Hence, for all ε′′ > 0, there exists
γ = α−1

1 ◦ δ ◦ α2 ◦ χ such that

P{|x(t)| < γ(‖u‖)} ≥ 1− ε′′, ∀ t ≥ τ. (15)

Thus, we get

P{|x(t)| < β(|x0|, t− t0) + γ(‖u‖)}
≥ max{1− ε′, 1− ε′′}
= 1−min{ε′, ε′′}
= 1− ε, ∀ t ≥ t0,∀x0 ∈ Bc. (16)



Case 2. x0 ∈ B\{0}. In this case τ = t0 a.s.
When t > t0, P{t ∈ (τ,∞)} = P{t ∈ (t0,∞)} = 1.

Following the proof of Case 1., we know that (15) still holds,
and then,

P{|x(t)| < β(|x0|, t− t0) + γ(‖u‖)}
≥ P{|x(t)| < γ(‖u‖)} ≥ 1− ε′′. (17)

When t = t0, by the definition of the set B and the definition
of γ, we obtain

P{|x(t0)| < β(|x0|, 0) + γ(‖u‖)}
≥ P{|x(t0)| < γ(‖u‖)} = 1,

which implies

P{|x(t0)| < β(|x0|, 0) + γ(‖u‖)} = 1. (18)

Thus, by (17) and (18) we have

P{|x(t)| < β(|x0|, t− t0) + γ(‖u‖)} ≥ 1− ε, (19)
∀ t ≥ t0, x0 ∈ B\{0}.

In conclusion, by (16) and (19) we have

P{|x(t)| < β(|x0|, t− t0) + γ(‖u‖)} ≥ 1− ε,

∀ t ≥ t0, x0 ∈ Rn\{0}.

So, system (2) is FTSISS.

4 Simulation examples

In this section, two examples are presented to demonstrate
the effectiveness of our main results. For convenience, only
some first-order SNL systems will be considered.

Example 4.1 Consider the following first-order SNL non
autonomous system

dx = (−1
2
x2 − |x| 12 )sign(x)dt + sin(t)|x| 32 dw (20)

where x ∈ R. Let V (x) = 1
2x2 and then

LV (x) = x(−1
2
x2 − |x| 12 )sign(x) +

1
2

sin2(t)|x|3

≤ −2
3
4 (V (x))

3
4 .

Based on Theorem 3.1 (or corollary 3.1), we can conclude
that the origin x = 0 is FTGASiP. The simulation curves
of w(t) and x(t) with x0 = ±1 are shown in Figs. 1
and 2. Furthermore, we easily conclude that the stochas-
tic setting time function T0(t0, x0, w) uniformly satisfies

ET0(t0, x0, w) ≤ ∫ 1
2

0
1

2
3
4 v

3
4
dv = 2. From Fig. 2, it can

be seen that x(t) with x0 = ±1 indeed converges to zero
at about 2s, which accords with Theorem 3.1 (or Corollary
3.1).

Example 4.2 Consider the following first-order SNL sys-
tem

dx = (−x− x
1
3 + u)dt + xdw (21)
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Fig. 1: Response curve of w(t) in system (20)
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Fig. 2: Response curve of x(t) in system (20)

where x ∈ R and u ∈ R are the system state and input,
respectively. Let V (x) = 1

2x2 and then

|x| ≥ |u| 32 ⇒ LV (x) = x(−x− x
1
3 + u) +

1
2
x2

≤ −1
2
· 2 2

3 (V (x))
2
3 .

Based on Theorem 3.2, system (21) is FTSISS. The simu-
lation curves of x(t) with x0 = ±0.5 and input u ≡ 0.5
are shown in Fig. 3. From Fig. 3, it can be seen that,
due to the effect of input u, x(t) with x0 = ±0.5 will not
converge to zero. But, we can find that afte ET0(x0, w) ≤∫ 1

2
0

1
1
2 2

2
3 v

2
3
dv ≈ 1.9s, the two solutions x(t) with x0 = ±0.5

will be equal all along and remain bounded, which means
that the state is bounded by a function of the input alone.
This is consistent with Definition 2.3 (or Remark 2). On the
other hand, if the input u ≡ 0, we can get that

LV (x) = x(−x− x
1
3 ) +

1
2
x2 ≤ −1

2
x2 − x

4
3 .

Roughly speaking,

LV (x) ≤ −x
4
3 = −2

2
3 (V (x))

2
3 .

Based on Theorem 3.1 (or corollary 3.1), we can conclude
that the origin x = 0 is FTGASiP. The simulation curves of
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Fig. 3: Response curve of x(t) in system (21) with u ≡
0.5
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Fig. 4: Response curve of x(t) in system (21) with u ≡ 0

x(t) with x0 = ±0.5 are shown in Fig. 4. From Fig. 4, it
can be seen that x(t) with x0 = ±0.5 indeed converges to
zero at finite time.

5 Conclusion

In this paper, the notions of FTGASiP and FTSISS are
introduced for SNL systems. By the Lypunov-like function
method, some corresponding criteria on FTGASiP and FT-
SISS are provided. In the proof of the criteria, to describe
the finite-time asymptotic property of the solutions to the
systems, a GKL function β is obtained. To illustrate the ef-
fectiveness of our criteria, some examples are also provided.
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