作者简介:
                    Lennart Ljung教授,现任瑞典皇家工程科学院院土、瑞典皇家科学院院士、IFAC顾问、IEEE Fellow及多家国际刊物编委等职,在国际上拥有很高的学术地位。Lennart Ljung教授在系统辨识领域的贡献是世界公认的,可以说他及他所领导的“控制小组”在辨识方面所做的工作代表着系统辨识学科的前沿,尤其在辨识模型和辨识方法的一般性框架、快速辨识算法、辨识收敛性分析、可辨识性理论及闭环系统辨识等方面所做的贡献都是具有前瞻性和开创性的。 
        内容简介: 
           本书由四大部分内容构成:系统与模型、辨识方法、理论分析、使用者的选择。系统与模型部分主要论述线性时不变系统、线性时变系统和非线性系统的描述及其对应的模型结构。辨识方法部分主要论述各类模型参数辨识算法及其数值解方法,包括非参数时域与频域辨识方法、最小二乘辨识方法、线性回归辨识方法、预报误差辨识方法、子空间辨识方法、极大似然辨识方法、拟线性回归辨识方法、辅助变量辨识方法等。理论分析部分主要讨论了基于数据集性质的辨识算法的一致性、收敛性、可辨识性和参数估计的渐近分布等问题。使用者的选择部分主要阐述辨识目的、开环辨识实验设计、闭环辨识实验设计、采样时间的选择、数据预处理、辨识准则的选择、模型结构辨识、模型验证、辨识软件工具、辨识应用中的一些实际考虑和辨识应用等问题。 
            本书是世界多所知名大学,包括Stanford大学、MIT、Yale大学、澳大利亚国立大学、瑞典Linköping大学和Lund大学,系统辨识课程的教材,也应该成为我国自动化专业控制科学与控制工程学科研究生系统辨识课程的教材或教学参考书。本书还适合于自学者、有关技术人员、高校教师参考。 
            本书由系统与模型、辨识方法、理论分析、使用者的选择四部分内容构成。全书所引用的参考文献十分丰富,几乎包罗了系统辨识领域的许多重要文献和反映重要问题的原始文献。 
        英文目录
        1 Introduction
                1.1 Dynamic Systems
                1.2 Models
                1.3 An Archetypical  Problem—ARX Models and the Linear  Least Squares Method
                1.4 The System  Identification Procedure
                1.5 Organization of the Book
                1.6 Bibliography
                  Part i: systems and models
          2 Time-Invariant Linear Systems
            2.1 Impulse Responses, Disturbances,  and Transfer Functions
            2.2 Frequency-Domain  Expressions
            2.3 Signal Spectra 
            2.4 Single Realization  Behavior and Ergodicity Results (*)
            2.5 Multivariable Systems (*)
            2.6 Summary
            2.7 Bibliography
            2.8 Problems
            Appendix 2A: Proof of Theorem 2.2
            Appendix 2B: Proof of Theorem  2.3
            Appendix 2C: Covariance Formulas
          3 Simulation and Prediction
            3.1 Simulation
            3.2 Prediction
            3.3 Observers
            3.4 Summary
            3.5 Bibliography
            3.6 Problems
          4 Models of Linear Time-Invariant  Systems
            4.1 Linear Models and Sets  of Linear Models
            4.2 A Family of Transfer-Function Models
            4.3 State-Space Models
            4.4 Distributed Parameter  Models (*)
            4.5 Model Sets, Model  Structures, and Identifiability: Some Formal Aspects(*)
            4.6 Identifiability of Some  Model Structures
            4.7 Summary
            4.8 Bibliography
            4.9 Problems
            Appendix 4A: Identifiability of Black-Box  Multivariable Model Structures
          5 Models for Time-Varying and Nonlinear  Systems
            5.1 Linear Time-Varying  Models
            5.2 Models with Nonlinearities
            5.3 Nonlinear State-Space  Models
            5.4 Nonlinear Black-Box  Models: Basic Principles
            5.5 Nonlinear Black-Box  Models: Neural Networks, Wavelets and Classical Models
            5.6 Fuzzy Models
            5.7 Formal  Characterization of Models (*)
            5.8 Summary
            5.9 Bibliography
            5.10 Problems
                  Part ii: methods
          6 Nonparametric Time-and  Frequency-Domain Methods
            6.1 Transient-Response  Analysis and Correlation Analysis
            6.2 Frequency-Response  Analysis
            6.3 Fourier Analysis
            6.4 Spectral Analysis
            6.5 Estimating the  Disturbance Spectrum (*)
            6.6 Summary
            6.7 Bibliography
            6.8 Problems
            Appendix 6A:  Derivation of the Asymptotic Properties of the Spectral Analysis Estimate
          7 Parameter Estimation Methods
            7.1 Guiding Principles  Behind Parameter Estimation Methods
            7.2 Minimizing Prediction  Errors
            7.3 Linear Regressions and  the Least-Squares Method
            7.4 A Statistical Framework for  Parameter Estimation and the Maximum Likelihood Method
            7.5 Correlating Prediction  Errors with Past Data
            7.6 Instrumental-Variable Methods
            7.7 Using Frequency Domain  Data to Fit Linear Models (*)
            7.8 Summary
            7.9 Bibliography
            7.10 Problems
            Appendix 7A: Proof of the Cramer-Rao Inequality
          8 Convergence and Consistency
            8.1 Introduction
            8.2 Conditions on the Data  Set
            8.3 Prediction-Error  Approach
            8.4 Consistency and  Identifiability
            8.5 Linear Time-Invariant Models: A Frequency-Domain  Description of the Limit Model
            8.6 The Correlation  Approach
            8.7 Summary
            8.8 Bibliography
            8.9 Problems
          9 Asymptotic Distribution of  Parameter Estimates
            9.1 Introduction
            9.2 The Prediction-Error  Approach: Basic Theorem
            9.3 Expressions for the  Asymptotic Variance
            9.4 Frequency-Domain  Expressions for the Asymptotic Variance
            9.5 The Correlation  Approach
            9.6 Use and Relevance of  Asymptotic Variance Expressions
            9.7 Summary
            9.8 Bibliography
            9.9 Problems
            Appendix 9A: Proof of Theorem 9.1
            Appendix 9A: The Asymptotic Parameter Variance
          10 Computing the Estimate
            10.1 Linear Regressions  and Beast Squares
            10.2 Numerical Solution by  Iterative Search Methods
            10.3 Computing Gradients
            10.4 Two-Stage and  Multistage Methods
            10.5 Local Solutions and  Initial Values
            10.6 Subspace Methods for  Estimating State Space Models
            10.7 Summary
            10.8 Bibliography
            10.9 Problems
          11 Recursive Estimation Methods
            11.1 Introduction
            11.2 The Recursive  Least-Squares Algorithm
            11.3 The Recursive IV  Method
            1l.4 Recursive  Prediction-Error Methods
            11.5 Recursive  Pseudolinear Regressions
            11.6 The Choice of  Updating Step
            11.7 Implementation
            11.8 Summary
            11.9 Bibliography
            11.10 Problems
            Appendix 11A: Techniques for Asymptotic Analysis of  Recursive Algorithms
                
          Part iii: user's choices
          12 Options and Objectives
            12.1 Options
            12.2 Objectives
            12.3 Bias and Variance
            12.4 Summary
            12.5 Bibliography
            12.6 Problems
          13 Experiment Design
            13.1 Some General  Considerations
            13.2 Informative  Experiments
            13.3 Input Design for Open  Loop Experiments
            13.4 Identification in  Closed Loop: Identifiability
            13.5 Approaches to Closed  Loop Identification
            13.6 Optimal Experiment  Design for High-Order Black-Box Models
            13.7 Choice of Sampling  Interval and Presampling Filters
            13.8 Summary
            13.9 Bibliography
            13.10 Problems
          14 Preprocessing Data
            14.1 Drifts and Detrending
            14.2 Outliers and Missing  Data
            14.3 Selecting Segments of  Data and Merging Experiments
            14.4 Prefiltering
            14.5 Formal Design of  Prefiltering and Input Properties
            14.6 Summary
            14.7 Bibliography
            14.8 Problems
          15 Choice of Identification  Criterion
            15.1 General Aspects
            15.2 Choice of Norm:  Robustness
            15.3 Variance-Optimal  Instruments
            15.4 Summary
            15.5 Bibliography
            15.6 Problems
          16 Model Structure Selection and  Model Validation
            16.1 General Aspects of  the Choice of Model Structure
            16.2   A Priori Considerations
            16.3 Model Structure  Selection Based on Preliminary Data Analysis
            16.4 Comparing Model  Structures
            16.5 Model Validation
            16.6 Residual Analysis
            16.7 Summary
            16.8 Bibliography
            16.9 Problems
          17 System Identification in  Practice
            17.1 The Tool: Interactive  Software
            17.2 The Practical Side of  System Identification
            17.3 Some Applications 
            17.4 What Does System  Identification Have to Offer?
         Appendix I some concepts from  probability theory
          Appendix II some statistical techniques  for linear regressions
            ii.1 Linear Regressions  and the Least Squares Estimate
            ii.2 Statistical  Properties of the Least-Squares Estimate
            ii.3 Some Further Topics  in Least-Squares Estimation
            ii.4 Problems
          References
          Subject Index
          Reference Index