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Abstract: This paper presents a fundamentally novel approach to iqedmutput-feedback control of nonlinear systems. The
advances made toward this challenging, yet important, lprotare a seamless integration of dynamic quantization hed t
recently developed cyclic-small-gain theorem. The careséd output-feedback quantized controller guaranteesniut-to-
state stability (ISS) property for the closed-loop quasdizystem. More interestingly, an ISS-Lyapunov functiodesved and

is used in the implementation of output dynamic quantiratéven with a 1-bit quantizer.
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1 INTRODUCTION R;: — R, is positive definite if it is continuousy(s) > 0

for all s> 0 andy(0) =0. y: Ry — R, is a.# function

fdenoted byy € J¢) if it is continuous, strictly increasing
ndy(0) = 0; it is a % function (denoted by € %) if

Over the past few years, quantized feedback control ha
gained intensive attention due to the convergence of clsntro
and communications. Dynamic quantization was develope is a.# function and also satisfie(s) — © ass — .

to deql with problem_s c_aused by the f_inite Wofd Ie_ngt_h of theId represents the identity functioh, represents the identity
guantizers. The basic idea of dynamic quantization is to APt atrix of sizen. Amax(P) andAmin(P) mean the largest and

propriately scale the quantization levels such that thetinp the smallest eigenvalues of a real and symmetric maix
of the quantizer is always covered by the range of the quaniespectively

tizer, and at the same time, the state of the control syste

converges to the origin. Recent results of dynamically guan PROBLEM FORMULATION
tized control of networked systems and nonlinear systemsonsider the disturbed output-feedback nonlinear system
can be found in [8, 10]. with quantized output:

The input-to-state stability (ISS) methodology (see [15])

and 1SS small-gain theorem [4, 3] has been introduced to % =Xp1+fi(yd), 1<si<n-1 @)
quantized control to characterize the robustness of qgesthti Xn = U+ fn(y,d) (2)
control systems with respect to quantization errors in.[10] y=X1 (3)
Quantized output feedback control has also been studied in Vi =q(y, 1) (4)

[9, 11] for linear and nonlinear systems. Specifically, the a

thor of [11] presented an 1SS-based framework for quantizedvhere[xy, . .. ,%n]T € R"is the statey € R is the control in-
output-feedback control. put, d € R represents external disturbance inpyts; R
This paper attempts to develop a fundamentally new desigis the outputg(y, 1) is the output quantizer with variable
tool for quantized output-feedback control of nonliness-sy H > 0, 9 € R is the quantized outpufxy,...,|" is the
tems, which is general enough to recover previous studies itthmeasured portion of the state, afiid (1 <i < n) are un-
the recent literature. The novelty of the proposed approact¢ertain locally Lipschitz continuous functions.

lies in the employments of: (i) set-valued maps to cover theramark 1 It is worth noting that the generality and impor-

un_certair_ny caused by .the guantization error; (ii) modif_ied,[ance of output-feedback nonlinear systéfjs(3) has been
gain assignment technique [4] as a tool for control designy e|| outlined in [7] and numerous references therein. How-

(iif) our recent result of cyclic-small-gain theorem [6,]18 g /¢r |ittle research has been done from a viewpoint of quan-
guarantee stability and to construct an ISS-Lyapunov funcs;,«( feedback control due to technical challenges.
tion. Dynamic quantization is designed based on the ISS-

Lyapunov function. Our result shows that the output of the Output quantizeq(y, ) is defined asy(y, ) = Hdo (%)
quantized control system can be steered to within an arbiyhereqy, : R — Q is a piece-wise constant function satisfy-
trarily small neighborhood of the origin even with a 1-bit jq go(r) —r| < 1if |r| < M. We directly use the following
uniform quantizer. property ofq(y, 1):
To make the paper self-contained, recall that a funcgion

Iyl <Mp = laly,u) -yl < i, (5)

This research was supported under the Australian Researchcils . . .

Discovery funding scheme (project number: FF0455875)ait fpy a seed WhereM >0, MU_ IS t_he quantization range apd> 0 is the
grant from NYU and POLY, and by NSF grant DMS-0906659. maximum quantization error WhGM <Mp.




Remark 2 In[9], quantizers are formulated dg| < Mu =
laly, 1) —y| < Au with A > 0. It is of interest to note that
(5) is in accordance with the formulation in [9]. Indeed, if
A# 1, defineu’ = Ap, M' =M/Aand d(y, i) = KL (%’)
Then,ly| <M'u’ = [d/(y, ') —y| < p".

Given fixedM, the basic idea of dynamic quantization is to

dynamically update: (and thusvi i) in the process of quan-

tized control to improve the control performance. Variable

U is referred to as zooming variable. Increasingnlarges
the range and is called zooming-out; decreagingduces
the range and is called zooming-in.

In this paper, it is assumed thatis right-continuous with
respect to time and is updated in discrete-time as:

H(tki1) = Q(u(t)), keZy (6)

a function V¢ : R™ — R, is an ISS-Lyapunov function if it
is positive definite, radially unbounded and differenteadl-
most everywhere, and there exigt’, ..., x&" € e anda
positive definite such that

= DVC(C>f(Cawlvawm> < 7GC(VC(C)) (8)

holds wherever yis differentiable. Functiorx is referred
to as the ISS gain frormg to V().

The objective of this paper is to design a quantized output

feedback controller with dynamic quantization to steer the

outputy to within an arbitrarily small neighborhood of the

origin.

3 A NEW TOOL FOR QUANTIZED OUTPUT-
FEEDBACK CONTROL DESIGN

whereQ: R, — R, represents the dynamic quantization By convenience, denote = y? —y as the quantization error.

logic, andty > O with k € Z,. are updating times satisfying
tkr 1 —tk = di with d; > 0.
Assumptions 1-4 are made throughout the paper.

Assumption 1 System(1)~(3) with u= 0 is forward com-

plete and small-time norm-observable with y as the output.

Remark 3 Assumption 1 is needed only for zooming-out. ; :
d each 2<i < n. Defineg =

Refer to [1] and [11] for small-time norm-observability an
its application in dynamic quantization.

Assumption 2 For each f(y,d) (1 <i <n)in (1)}2), there
exists a knownys, € %, such that

fi(y,d)| < @y (|ly,d"]"]), WyeR, VdeRM.  (7)

Assumption 3 The external disturbance d f1)+2) is al-
lowed to take values id% with constanid > 0 and % the
unit ball in R"d.

Assumption 4 Quantizer qy, 1) satisfieq5) with M > 1.

Remark 4 Assumption 4 is not restrictive. M 1 means
that quantization range M is strictly larger than the max-
imal quantization erroru whenly| < Mpu. This is satisfied
even by thd-bit uniform quantizer [8] shown in Fig. 1.

avk)

L,

3u

Fig. 1: The 1-bit uniform quantizer satisfying (5) with =
3.

Definition 1 ([15]) For a continuous-time nonlinear system
¢ = (¢, m,...,mn), with state¢ € R", external inputs
@ € R™ (i =1,...,m) and locally Lipschitz vector field f,

3.1 Reduced-order Observer Design
We construct the following reduced-order observer:

éi :Ei+1+Li+1yq*Li(EZ+L2yq)v ZSI Snil (9)
En=u—Ln(&+ L2y (10)

whereé; is an estimate for the unmeasured state Ly for

X2 —Lay—&2,..., % — Lny —

&nT as the observation error. Then, from (1)-(4) and (9)—
(10), we get the observation error system:

where
L,
A=| 2 )
*Lnfl
. —Lh 0 -0
I _L2 fl(y7d)
@(y,d,w) = : In-1 :
| —Ln fn(y,d)
L3—Ls
4 W (13)
Ln-ilo—Ln
LnLZ

Real constantk;’s in (12) are chosen so thatis Hurwitz,
and thus there exists a matix= PT > 0 satisfyingPA+
ATP = —2I,,_1. For ¢ defined in (13), using Assumption
2, we can findpy , WS, Y € H such thaja(y,d,w)[* <

W (1) + g (1d]) + g2 (w]) holds for ally, d,w.

Define V() = €} Pe. Define ay(s) = Amin(P)s$* and
To(S) = Amax(P)S? for s€ R,. Then,a,(|eo]) < Vo(&p) <
0o(|en|) holds for alley. Direct computation yields:

[Vo(eo)ép = — 26 € + 2€] Py (y, d, w)
<—ejeo+|P?|@(y,d, w)[?

1
<- mVo(eo)

+ [P (Wi (1Y) + W (1d]) + Wi ([w)).



Definexg' = 4)\max(P)|P|2wz/b' Xg = 4AmaX(P)|P|2w2b and
Xo = 4Amax(P)|P|?yjy . Then, we have

Vo(eo) = max{x3(Iy1), X5 (IdI), x5 (1)}
= [Vo(eo)éo < —ao(Vo(eo)) (14)

whereag(s) = sforse Ry.

1
D max(P)
3.2 Modified Gain Assignment Lemma

We will construct a newe( ey, ..., en"-system consisting
of ISS subsystems obtained through a recursive design of
the[e],e1, &y, ..., & T-system. The ISS-Lyapunov function
\p for the eg-subsystem is defined in Subsection 3.1. For
1 <i < n, eachg-subsystem will be designed with an ISS-
Lyapunov function candidate

Vi(e) = av(lal) (23)

This subsection presents a modified version of the gain aswhereay (s) = 132_ forse€ R,. In the following discussions,
signment technique in [4, 2, 14] for recursive quantized-con We simply useV; instead ofVi(e) for 0 <i < n. Denote

trol design. Consider the following first-order system:

n=n,0,...,0m)+Vv

where n € R is the state,v € R is the control input,

(15)

a:[eg;ela“'va]T andEi [EZ;"'?Ei]T-
In this subsection, we suppose thais constant and con-
sider only the case d&;| = |y| < Mu. From (5), this means

Iw| = |yd—y| < p.

d1,...,0m € Rrepresent the disturbance inputs, the nonlinear

functiong(n, o1, ..., om) satisfies
|¢’(’7;517;5m)| S‘l’w(””ﬁbﬁm}”)
with Y, € . DefineVy(n) = av(|n|) with ay (s) = 3

(16)

forse€ R, . Recall that sgn represents the standard sign func-

tion.

Lemma 1 Consider syster(il5). For any constand < ¢ <
1,>0,1>0 andx,%, e ,x,%“ € J%, one can find a smooth,
odd, strictly decreasing and radially unboundeduch that
if

Ve {K(N+admi1+sgn(n)om2) : [a <1} 7)
With dmy1, Omi2 € R4, then it holds that
Va(m) > max. {(ad.av (92) e}
= V()N < —1Vp(n). (18)

The proof of Lemma 1 is in Subsection 4.1.

Remark 5 The existence a¥y,2 > 0in (17)does not influ-
ence the ISS property of thpsystem. Intuitively, the term
sgnn)dm+2 with dyny2 > 0 consolidates the negative feed-
back strength of. See the proof of Lemma 1 for details.

3.3 Recursive Control Design
Definee; =y. Consider théel, e, &>, ..., &) T-system:

€ = A&+ (b(er,d,w) (19)
&1 = &2+ (o, €1,d) (20)
Gi=&intae,d,w), 2<i<n-1 (21)
Eh=u+ (e, &2,w) (22)

where

@1(eo,€1,d) = Loy + (X2 — Loy — &) + f1(y,d)
@a(er, &2,w) = Lipay? - Li(&2+Lay?), 2<i<n-1
%(ela EZ;W) = 7LH(EZ + L2yq>
We get (20) from theg-subsystem (1) using the fact that

(%2 — Loep — &) is the first element of vectay. We get (21)
and (22) from (9) and (10) by usind = y+w=e; +w.

3.3.1 Theey-subsystem

Define g = x3oay ! andxt = x&. Then, from (14), we
have

Vo > max{y5 (Va), x5 ([d]), X&' (1)}

= [Vo& < —ao(Vo). (24)
3.3.2 Thee;-subsystem
Thee;-subsystem can be rewritten as
= &L-et@(ed) (25)

with the new state variable, to be defined below. From
Assumption 2 and the definition qf, we can find ajiy €
He such thalef (&,d)| < Y ([€7.dT]T)).

Define a set-valued m&h as

Si(er, u) = {ki(er+ap):|a <1} (26)

with k3 smooth, odd, strictly decreasing and radially un-
bounded, to be determined later. State variaplis defined
as

& —maxSy(eg, 1),
52 - mlnSj_(e]_, I'l)v
0,

if & > maxSy(er, 4);
if & <minSy (e, u);
otherwise

&= (27)

Then, we havé, — e; € Sy(eq, 1).

For anyy?,y? € s, choosex) = Y oa, andx? = 2o
av. Then,2(Vo) = x%o agt(Vo) > x¥(|eo|) and y2(V,) =
X2 oa,1(V2) = x2(le2]). With Lemma 1, for any specified
0<ci<1,&>0,1 >0,y x¥ € #, we can find a
smooth, odd, strictly decreasing and radially unbourked
such that thee;-subsystem with, — e; € Sy(eq, 1) is 1SS
with V; satisfying

Va = max{ (Vo). (V) X3 (), Xt (k). & }
= V1&g < -1V (28)

wherex!t'(s) = ay(s/cy) forse R



Remark 6 Sincek; is strictly decreasing, we can explicitly
represent

(29)
(30)

maxS (e, i) = Ka(er — 1),
minSy(ey, 4) = Ky(€1+ H).
A set-valued mapiSwvith smooth, odd, strictly decreasing

and radially unboundesd; and the definition of gare shown
in Fig. 2.

&
(e1,&2)

fzé'mel)

Fig. 2: Bounds of set-valued m&p and the definition 0&,.

Remark 7 In standard backstepping [7E2 is usually con-
sidered as the virtual control of the-esubsystem. To take
the quantization error w into account, the virtual contral

should be a function of w. However, the discontinuity of w

leads to discontinuity of the virtual control law, which iard

to handle by directly taking the derivative. The set-valued
map S defined in(26) overcomes this problem. As shown in
Fig. 2, we can just stee, to the region with smooth bounds

maxS; andminSy, instead of drivingg, to some specific dis-
continuous virtual control law.

3.3.3 Theg-subsystem2 <i <n)
When 3<i < n, foreach 2< k <i— 1, suppose that

H1 a set-valued maf is defined as

Sc(en, & 1) = {Ki(&— Pr) : Px € Sca(en, &1, 1)}

whereky is smooth, odd, strictly decreasing and radi-

ally unbounded;

H2 the new state variabkg 1 is defined as

Ek1 — maxS(er, &, 1), B

if ki1 > maxSc(er, &k, 1);
&k+1 — minSc(eq, &k, 1), N

if ékr1 < minSc(en, &k, 1);
0, otherwise

€+1=

Remark 8 It is worth noting that, sincexy is strictly de-
creasing, it holds:

maSc(ey, &, 1) = k(& —maxSc-1(er, &1 1)), (31)
minSc(er, &, M) = Kk(§k —minSc1(er, &1, 4)).  (32)

Lemma 2 Consider théel,er,&,..., & " -system in(19)-
(22) with |ey] < Mp. For 2 <i <n, with §(e;,u) and
defined in(26) and (27) and Assumptions H1 and H2 satis-
fied for eacl2 <k <i—1if 3<i <n, forany variable g 1,
when ¢ # 0, we can derive the;esubsystem to

& =E1—8u+@ @G, duWE) (33)
where
|6 (& 1.0 W, &) < W (18T 1,d7, 1))

with g € . Specificallyéni1 = u.

(34)

The proof of Lemma 2 is in Subsection 4.2.
Define a set-valued m&p as

S(er, & 1) = {ki(&—p):peS-1(en& 1,1)} (35

with k; smooth, odd, strictly decreasing and radially un-
bounded, to be defined later. Defige; as

&1 —maxS (e, &, 1), _

if &i+1 > maxS(en, &, U);
&iv1—minS(ey, &, 1), 3

if &1 <minS(e, &, 1);
0, otherwise

€41= (36)

Then, we havéi, 1 — &1 € S(e, &, ).

From the definition ofg (i.e., .1 with k=1 —1) in
Assumption H2, in the case of # 0, for all p €
S-1(e1,&-1, 1), it holds that|& — pi| > |&| and sgi& —
pi) = sgne), which means sgid; — pi — &) = sgne), and
thusé —pi =&+ (& — pi—e) =& +sgne)|é& — pi—el.
Note thatéi 1 — e.1 € S(e1,&,u). There always exists a
pi € S-1(er,& -1, 1) such thaté 1 — &1 = Ki(& — pi) =
Ki(& +sgne)|& — pi — &)

With  Lemma 1, for any & > 0, 1 > O,
W,y xd xH € A, we can find a smooth,
odd, strictly decreasing and radially unboundgduch that
the g-subsystem wittj .1 — g1 € S(ey, &, ) is ISS with
V; satisfying

V; > max

k=0,...,i—1,i+
= [Ovie < —iVi.

{0 X dD) X ()8 )

(37)
By default,Vh1 := av(|ent1]). The true control inputi =
&n.1 occurs with thes,-subsystem, and we set, 1 = 0.
3.3.4 Realizable Quantized Controller

From (37) withi = n, our desired quantized controlleican
be chosen in the following form:

P> = K1(y?) (38)
P =kKi-1(éi-1—pg), 3<i<n (39
U= Kn(&n— Pn)- (40)

In the case ofy| < My, we havejw| = |y9—y| < u and

thusky(y9) = k1(y+Ww) = K1(e1 +w) € Sy(e, 1). Itis then
directly checked that

D5 € Si(en, ) == pf €S 1(en, & 1, 1) B
== U=&n1—en1 € Sienén 1)



whereen 1 = 0. Thus, ifly| < My, then the quantized con- 3.5 Dynamic Quantization

trol law (38)—(40) guarantees (28) and (37). Define ® = ay(My). Then, u = a;%(®)/M. Dynamic

3.4 Cyclic-small-gain based Synthesis quantization can be determined by designing an update law
for ©. Denotex = [xg,...,%)|T and& = [&,...,&]T. Re-
calle= [ep,...,en]" and the definition o& fori =0,...,n.

The transformed state variatdean be considered as a con-
tinuous function of, &, u. Note thaty = a,,*(©)/M. De-
notee=e(x, &,0). In dynamic quantizatior® is piece-wise
constant on the time-line and denoted@s). Clearly, the
piece-wise constant adjustment®fieads to jumps oé.

Due to space limitation, some results in this subsection are
/\\ presented without proofs. However, the proofs are availabl
O[M;'O from the authors upon request.
& aw

3.5.1 Zooming-out Stage

Denotee = e,. For 0< i < n, eachg-subsystem has been
made ISS (or more precisely, practically ISS). In this sub-
section, we fine tune the ISS-gains such thatetsystem
satisfies the cyclic-small-gain condition [6, 12]. The syst
graph of thee-system is shown in Fig. 3.

Fig. 3: The system graph of thessystem. The design of the zooming-out stage is motivated by [11].
In this stage, the control inputand the stat€ of the ob-

server are set to be zero. The small-time norm-observabilit
assumed in Assumption 1 guarantees thatdfor 0, there
exists ap € 7%, such that

According to the recursive design, given #e;-subsystem,
by designing the set-valued m&pfor the g-subsystem, we
assign the ISS gaing& (1 < k <i— 1) such that

Kloyt 2o oy Foy joyf <ld. (41) IX(t+d)| < @ (1Yl otera) (46)
Applying this reasoning repeatedly, tesystem satisfies the  for all k € Z,.. Considering the definitions &f ande, for
cyclic-small-gain condition in [6, 12]. d: > 0, there exists & € %5 such that
An ISS-Lyapunov function is constructed as: _

V(e(X(tc+),0,0)| < d(IVllgte+a)  (47)
V(e) = max{ai(Vi(e))} (42)
O<i<n forallke Z, .

with g1(s) = s, ai(s) = PP o -- (9 2<i<n)and The forward completeness assumed in Assumption 1 guar-

_ _ B9} f R here th V< antees that we can increa®efast enough to dominate the
(s) = maxl_ggn{a. oW ( } orse *’_W ere ey S growth rate of@(ly|). Thus, we can design the zooming-
are % functions smooth ori0, ) and slightly larger than gyt ogic to increas® (and thusu) fast enough such that at
the correspondlng< 's and still satisfy the cyclic-small-gain  some time- > 0 with k* € Z_, it holds that

condition.

Recall|d| < d. Denotegy = 0. We represent the maximal ~ ©(tk:) = @ (¥l —at t.)) = Max{V (e(x(ti-),0,0)), 9o}

influence ofd, u andg (1 <i<n)as (48)
From the definition of§ in (26) and (35), it can be observed
9= 0m_ax{cr, oxd(d), o oXi (p),ai(si)}, (43)  that increase oft (and thus®) leads to increase of m&k
<i<n

and decrease of mi. Using the definition o, 1, increase
Using the Lyapunov-based cyclic-small-gain theorem inof © leads to decrease or hold |ef; 1| (and thus decrease or
[12], we achieve that ify| < My, then thee-system with  hold ofV (e)). Note thaté () = 0. From (48), we achieve

guantized control law (38)—(40) satisfies
_ O(ti-) = max{V (e(X(ti- ), & (t-), Ot ))), Jo}.  (49)
V(e)>9 =0V(eée< —a(V(e) (44)

whereverlV (e) exists, witha positive definite. Note that 3.5.2 Zooming-in Stage

Ov(e) eX|sts.aImost. everywhere [12]. _ With the help of Assumption 4, in the constructive control

In the recursive design approach, we can makqéb’e (and  design procedure, we can choagesatisfying ¥M < ¢; <

thus thef/((,'))’s) arbitrarily small to get arbitrarily smay's 1+ Tthe”é f:{‘?r_*: thze de::rt‘r';f"i'@ = ay(Mu), one can find a
ositive definitep? such tha

(0<i<n, i#1). We can also select th¢''s (0 <i <n), P 1

theg's (1<i<n)and thexi“’s (0<i<n,i##1)arbitrarily av(p/cr) < (Id— p3)(©). (50)

small. In this way, for arbitrarily smattg > 0, we can design

the gains such that max<n {gjo x%(d),0i(&)} < 9 and  Suppose that at some tie> 0 with k € Z.., it holds that

MaX<i<n, iz1{Gio X (1)} < Do.

Recallx} (s) = av(s/c1) forse R, defined in (28). Ify| < O(tx) > max{V (e(x(t), & (t),O(t))),J0}.  (51)
Mu, then quantized control law (38)—(40) guarantees We want to find aQ® : Ry — R, such thatO(tc,1) =
V(e) > max{ay (1/c1), 9} = OV(e)e< —a(V(e)) (45) Qn(O(t)) satisfies

whereverllV (e) exists. O(tkr1) > max{V (e(X(t+1), € (tkt1), O(tk+1))), Jo}  (52)



wherety, 1 —tx = ¢h.

One can find a positive definitgs such that (Id —

p3) € o and (Id — p3)(s) > max{(Id — pf)(s),s — ¢ -

Mingg_p?)(9)<v<s (V) } for se R.. Define
==Id-p;.

Condition (51) implies V(e(x(tk), & (tk),O(t)))

ay(Mu(ty)). From (45) and (50), if (51) holds, then

V(&(X(tr1), € (ter1), Ot))) < max{=(O(k)), %o} (54)

(53)
<

Using the property of continuous functions, we can find a

positive definitgpj < Id such that foralk e R", & € RM1
© > 0 andh > 0, it holds that

V(e(x,§,©—p3(h))) —V(e(x,¢,0)) <h. (55)
Define
09(0) = 0 p3 (@ —max= (@)"90}) . (56)
Then, (54), (55) and (56) imply
V(e(X(tkr1), € (ticr), Otkr1)))
< O(ty) + max{zE(G(tk)), 190}7 (57)
and (51) and (56) imply
Oltis) > O(t) + max{=(0(t)), %o} > 0. (58)

2
Properties (57) and (58) together guarantee (52).

Lemma 3 Suppose tha®(tx-) > 9 with k* € Z,. Then,
the zooming-in 10gi©(tx; 1) = Q2(O(ty)) for k € Z. with
QP defined in(56) guarantees

Ilim O(tk) = Jo. (59)

The proof of Lemma 3 is in Subsection 4.3. The motions of
O(t) andV(e(x(t),&(t),O(t))) in the zooming-in stage are
shown in Fig. 4.

t tict1

Fig. 4: Motions of©(t) andW(t) =V (e(x(t),&(t),O(t))) in
the zooming-in stage.

With the appropriately designed zooming-in logic in
(56), it always holds that/(e(x(t),&(t),0(t))) < O(t)

in the zooming-in stage. Thus, the closed-loop
signals are bounded. By using (59), we have
limi_oV (e(x(t),&(1),0(t))) < Jo. Recall the defini-
tion of V in (42). It can be observed that=x; = g
ultimately converges to within the regidg| < ay (o).

By choosingdg arbitrarily small, outpuy can be steered to
within an arbitrarily small neighborhood of the origin.
Recall® = ay (Mpu). With Q2 defined in (56), the zooming-
in logic for u is designed as

Qnlt) = g oQRoav(Mu). (60

3.6 Main Result
The main result of this paper is summarized in Theorem 1.

Theorem 1 Consider systenfil}+(4) with output quantiza-
tion satisfying(5). Under Assumptions 1-4, the closed-loop
signals are bounded, and in particular, the output y can be
steered to within an arbitrarily small neighborhood of the
origin with the quantized output-feedback controller com-
posed of reduced-order obsery@&—(10), control law(38)-
(40), and dynamic quantization of for(6) with zooming-in
dynamics Q= Qj, defined in(60).

4 PROOFS OF LEMMAS 1-3

4.1 Proofof Lemmal
Using (16), one can fingsy, wgl, - wg“ € Js such that

m

0(n,81,....8m) < wg(In))+ S wa(lad).

k=1

(61)

-1 .
Note_thatwg (s)+ Sheq t,uf} o (X,‘;) oay(s)+ 5sis ate
function ofs. With Lemma 1 in [2], forany O< c < 1 and
€ >0, one can find @ : R, — R, positive, nondecreasing
and smooth orf0, ), such that

(1-0)p((1-c/*P)s

”s+m %o (xK o 9+ 1s
Up(9+ 3 o (xf) oav()

2

>

(62)

for all s> /2¢. Definek(r) = —p(r?)r forr € R. Then,k
is smooth, odd, strictly decreasing and radially unbounded

Recall V4 (n) = av(|n]) = %nz. Consider the case of

.....

O L
&< (xk) eav(inh. 1<k<m  (63)

i1 < cay H(Vp(n)) =cin| (64)
In| >v2e (65)

The v satisfying (17) can be represented\as: k(') =

—p(n"*)n" where n’ = n + sgn(n)[dm2| + @dms1 With
la] <1. With 0< c< 1 and (64), whem # 0, we have

sgn(n’) =sgn(n), |n’| > |n +adm.1| > (1—c)|n| and thus
p(n"?)[n'| = (1-c)p((1~c)*n?)|n|.
From (61)—(65) and the discussion above, we obtain

Vy (M) (@(n, 81, Om) +V)
= n(e(n,81,...,8m) —p(n'A)n’)
< nlle(n,81,....8m) — Inlp(n)|n’|
m -1
< Inl(wpan)+ 3w (x5) e av(in)
~(1-0)p((1-<?)nl)
< —’§|n|2:flvn<n>- (66)

This ends the proof.



4.2 Proof of Lemma 2

We simply useS; instead ofS(eg, &, ) for L <k <i-—1.
We only consider the time instants at whigh> 0. The proof
for the time instants at which < 0 is similar.

Consider the definition o, in (26) and the iteration-type

definitions ofS’s in Assumption H1. Recall (29), (30), (31)

and (32). The smoothness of thg,’s implies the smooth-

ness of ma%; with respect toe; and the smoothness of

maxS, with respect toé, and max§,_; for2 <k <i—1.

which is a asymptotically stable first-order discrete-
time system [5], and implies lign.. @' (t) = 0.

Recall the definition oE in (53). We can se& ! > Id and
=-1(8o) is larger thandy. Considering both cases (a) and
(b), we have lim_.. O(tx) = Jo. This ends the proof.

5 CONCLUSIONS

This paper makes significant progress on the challenginig, ye
important, problem of quantized output-feedback contfol o

Repeatedly using the property of the composition of smoothygpjinear systems, by developing a new tool based on re-

functions, we can see m&x 1 is smooth with respect to
[er,&",]T and thusd maxS_1/d[er,&" 4] is continuous
with respecttdey, & ;]7. Inthe case of > 0, the dynamics
of g can be derived as

.y omaxS_1 .. 5T OT
6 = EI d[el, i-[l]T [el7élfl]

JmaxS_1
a[el T ]T

) Gj—

= Ei+l - a+1+ qq*(éJrlvdv H,W, EI)

— &t aen&w) — en, &7 ]

(67)

Specifically,én1 = u. We used (20), (21) and (22) to get the

last equality above.

Recall |e;] < Mu = |w| < yu.  From (20), (21) and
(22), we can seg@(e1,é2,w)| is bounded by a7
function of |[e1, &, ]|, and|[é1,&",]T| is bounded by
a Je function of |[€],d,u,&T]T|.  Thus, we achieve
that |@" (a1, d, 4, w, & )| is bounded by a% function of
€,,d,1,&"T]T|.  To prove (34), we show thaj| is
bounded by ax:, function of |[g",u]T|. As pointed out in
[13], this can be achieved by provifg , u]T =0= & =0.
By using the definitions o, ande; in (26) and (27) and the
definitions of § and e, 1 in Assumptions H1 and H2, we
have

S={0}=&-e=0=&=0=- =
S={0}=é1-&;1=0=¢&;1=0, 2<k<i-1
This ends the proof.

4.3 Proof of Lemma 3

Consider the following two cases.

(@) =(O(t)) > Jo. From the definition of= in (53),
one can find a positive definite functigej such that
% (iﬁ) = p? (pzT(S)) > pi(s) for se Ry. In the
case of=(0O(tx)) > Jo, we have

o1t o5 (2 Z0)

O(t) — p1(O(t))

which guarantees that there existpa> 0 withk® € Z.,
such that=(O(tw)) < 99, and equivalently®(tyo) <
571(190).

(b) =(O(tk)) < 9. Define® (t) = O(tx) — Jo fork € Z..
Then, we obtain

O (tk+1) = O'(t) — P3 (%)

Otk+1) =

IN

(68)

(69)

cent cyclic-small-gain techniques [6, 12]. The result show
that dynamic quantization can be implemented even with a
1-bit uniform quantizer. Furthermore, the influence of the
external disturbance can be attenuated to an arbitrariism
level. It is our firm belief that the proposed design tool will
prove helpful for quantized feedback control of other impor
tant classes of nonlinear systems.
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