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Abstract: This paper presents a fundamentally novel approach to quantized output-feedback control of nonlinear systems. The
advances made toward this challenging, yet important, problem are a seamless integration of dynamic quantization and the
recently developed cyclic-small-gain theorem. The constructed output-feedback quantized controller guarantees the input-to-
state stability (ISS) property for the closed-loop quantized system. More interestingly, an ISS-Lyapunov function isderived and
is used in the implementation of output dynamic quantization, even with a 1-bit quantizer.
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1 INTRODUCTION

Over the past few years, quantized feedback control has
gained intensive attention due to the convergence of controls
and communications. Dynamic quantization was developed
to deal with problems caused by the finite word length of the
quantizers. The basic idea of dynamic quantization is to ap-
propriately scale the quantization levels such that the input
of the quantizer is always covered by the range of the quan-
tizer, and at the same time, the state of the control system
converges to the origin. Recent results of dynamically quan-
tized control of networked systems and nonlinear systems
can be found in [8, 10].
The input-to-state stability (ISS) methodology (see [15])
and ISS small-gain theorem [4, 3] has been introduced to
quantized control to characterize the robustness of quantized
control systems with respect to quantization errors in [10].
Quantized output feedback control has also been studied in
[9, 11] for linear and nonlinear systems. Specifically, the au-
thor of [11] presented an ISS-based framework for quantized
output-feedback control.
This paper attempts to develop a fundamentally new design
tool for quantized output-feedback control of nonlinear sys-
tems, which is general enough to recover previous studies in
the recent literature. The novelty of the proposed approach
lies in the employments of: (i) set-valued maps to cover the
uncertainty caused by the quantization error; (ii) modified
gain assignment technique [4] as a tool for control design;
(iii) our recent result of cyclic-small-gain theorem [6, 12] to
guarantee stability and to construct an ISS-Lyapunov func-
tion. Dynamic quantization is designed based on the ISS-
Lyapunov function. Our result shows that the output of the
quantized control system can be steered to within an arbi-
trarily small neighborhood of the origin even with a 1-bit
uniform quantizer.
To make the paper self-contained, recall that a functionγ :
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R+ → R+ is positive definite if it is continuous,γ (s) > 0
for all s> 0 andγ (0) = 0. γ : R+ → R+ is a K function
(denoted byγ ∈ K ) if it is continuous, strictly increasing
andγ (0) = 0; it is a K∞ function (denoted byγ ∈ K∞) if
it is a K function and also satisfiesγ (s) → ∞ as s→ ∞.
Id represents the identity function.In represents the identity
matrix of sizen. λmax(P) andλmin(P) mean the largest and
the smallest eigenvalues of a real and symmetric matrixP,
respectively.

2 PROBLEM FORMULATION

Consider the disturbed output-feedback nonlinear system
with quantized output:

ẋi = xi+1 + fi(y,d), 1≤ i ≤ n−1 (1)

ẋn = u+ fn(y,d) (2)

y = x1 (3)

yq = q(y,µ) (4)

where[x1, . . . ,xn]
T ∈ R

n is the state,u∈ R is the control in-
put, d ∈ R

nd represents external disturbance inputs,y ∈ R

is the output,q(y,µ) is the output quantizer with variable
µ > 0, yq ∈ R is the quantized output,[x2, . . . ,xn]

T is the
unmeasured portion of the state, andfi ’s (1≤ i ≤ n) are un-
certain locally Lipschitz continuous functions.

Remark 1 It is worth noting that the generality and impor-
tance of output-feedback nonlinear systems(1)–(3) has been
well outlined in [7] and numerous references therein. How-
ever, little research has been done from a viewpoint of quan-
tized feedback control due to technical challenges.

Output quantizerq(y,µ) is defined asq(y,µ) = µq0

(

y
µ

)

,

whereq0 : R → Ω is a piece-wise constant function satisfy-
ing |q0(r)− r| ≤ 1 if |r| ≤ M. We directly use the following
property ofq(y,µ):

|y| ≤ Mµ ⇒ |q(y,µ)−y| ≤ µ , (5)

whereM > 0, Mµ is the quantization range andµ > 0 is the
maximum quantization error when|y| ≤ Mµ .



Remark 2 In [9], quantizers are formulated as|y| ≤ Mµ ⇒
|q(y,µ)− y| ≤ ∆µ with ∆ > 0. It is of interest to note that
(5) is in accordance with the formulation in [9]. Indeed, if

∆ 6= 1, defineµ ′ = ∆µ , M′ = M/∆ and q′(y,µ ′) = µ ′
∆ q0

(

∆y
µ ′

)

.

Then,|y| ≤ M′µ ′ ⇒ |q′(y,µ ′)−y| ≤ µ ′.

Given fixedM, the basic idea of dynamic quantization is to
dynamically updateµ (and thusMµ) in the process of quan-
tized control to improve the control performance. Variable
µ is referred to as zooming variable. Increasingµ enlarges
the range and is called zooming-out; decreasingµ reduces
the range and is called zooming-in.
In this paper, it is assumed thatµ is right-continuous with
respect to time and is updated in discrete-time as:

µ(tk+1) = Q(µ(tk)), k∈ Z+ (6)

whereQ : R+ → R+ represents the dynamic quantization
logic, andtk ≥ 0 with k ∈ Z+ are updating times satisfying
tk+1− tk = dt with dt > 0.
Assumptions 1–4 are made throughout the paper.

Assumption 1 System(1)–(3) with u = 0 is forward com-
plete and small-time norm-observable with y as the output.

Remark 3 Assumption 1 is needed only for zooming-out.
Refer to [1] and [11] for small-time norm-observability and
its application in dynamic quantization.

Assumption 2 For each fi(y,d) (1≤ i ≤ n) in (1)–(2), there
exists a knownψ fi ∈ K∞ such that

| fi(y,d)| ≤ ψ fi (|[y,dT ]T |), ∀y∈ R, ∀d ∈ R
nd . (7)

Assumption 3 The external disturbance d in(1)–(2) is al-
lowed to take values in̄dB with constantd̄ ≥ 0 andB the
unit ball in R

nd .

Assumption 4 Quantizer q(y,µ) satisfies(5) with M > 1.

Remark 4 Assumption 4 is not restrictive. M> 1 means
that quantization range Mµ is strictly larger than the max-
imal quantization errorµ when|y| ≤ Mµ . This is satisfied
even by the1-bit uniform quantizer [8] shown in Fig. 1.
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Fig. 1: The 1-bit uniform quantizer satisfying (5) withM =
3.

Definition 1 ([15]) For a continuous-time nonlinear system
ς̇ = f (ς ,ϖ1, . . . ,ϖm), with stateς ∈ R

nς , external inputs
ϖi ∈ R

nϖi (i = 1, . . . ,m) and locally Lipschitz vector field f ,

a function Vς : R
nς → R+ is an ISS-Lyapunov function if it

is positive definite, radially unbounded and differentiable al-
most everywhere, and there existχϖ1

ς , . . . ,χϖm
ς ∈K∞ andας

positive definite such that

Vς (ς) ≥ max
i=1,...,m

{χϖi
ς (|ϖi |)}

⇒ ∇Vς (ς) f (ς ,ϖ1, . . . ,ϖm) ≤−ας (Vς (ς)) (8)

holds wherever Vς is differentiable. Functionχϖi
ς is referred

to as the ISS gain fromϖi to Vς (ς).

The objective of this paper is to design a quantized output
feedback controller with dynamic quantization to steer the
outputy to within an arbitrarily small neighborhood of the
origin.

3 A NEW TOOL FOR QUANTIZED OUTPUT-
FEEDBACK CONTROL DESIGN

By convenience, denotew = yq−y as the quantization error.

3.1 Reduced-order Observer Design

We construct the following reduced-order observer:

ξ̇i = ξi+1 +Li+1yq−Li(ξ2 +L2yq), 2≤ i ≤ n−1 (9)

ξ̇n = u−Ln(ξ2 +L2yq) (10)

whereξi is an estimate for the unmeasured statexi −Liy for
each 2≤ i ≤ n. Definee0 = [x2 − L2y− ξ2, . . . ,xn − Lny−
ξn]

T as the observation error. Then, from (1)–(4) and (9)–
(10), we get the observation error system:

ė0 = Ae0 + φ0(y,d,w) (11)

where

A =











−L2
...

−Ln−1

In−2

−Ln 0 · · · 0











, (12)

φ0(y,d,w) =







−L2
...

−Ln

In−1













f1(y,d)
...

fn(y,d)







+











L2
2−L3

...
Ln−1L2−Ln

LnL2











w. (13)

Real constantsLi ’s in (12) are chosen so thatA is Hurwitz,
and thus there exists a matrixP = PT > 0 satisfyingPA+
ATP = −2In−1. For φ0 defined in (13), using Assumption
2, we can findψy

φ0
,ψd

φ0
,ψw

φ0
∈ K∞ such that|φ0(y,d,w)|2 ≤

ψy
φ0

(|y|)+ ψd
φ0

(|d|)+ ψw
φ0

(|w|) holds for ally,d,w.

Define V0(e0) = eT
0 Pe0. Define α0(s) = λmin(P)s2 and

α0(s) = λmax(P)s2 for s∈ R+. Then,α0(|e0|) ≤ V0(e0) ≤
α0(|e0|) holds for alle0. Direct computation yields:

∇V0(e0)ė0 =−2eT
0 e0 +2eT

0 Pφ0(y,d,w)

≤−eT
0 e0 + |P|2|φ0(y,d,w)|2

≤− 1
λmax(P)

V0(e0)

+ |P|2(ψy
φ0

(|y|)+ ψd
φ0

(|d|)+ ψw
φ0

(|w|)).



Define χy
0 = 4λmax(P)|P|2ψy

φ0
, χd

0 = 4λmax(P)|P|2ψd
φ0

and

χ µ
0 = 4λmax(P)|P|2ψw

φ0
. Then, we have

V0(e0) ≥ max{χy
0(|y|),χd

0 (|d|),χ µ
0 (|w|)}

⇒ ∇V0(e0)ė0 ≤−α0(V0(e0)) (14)

whereα0(s) = 1
4λmax(P)

s for s∈ R+.

3.2 Modified Gain Assignment Lemma

This subsection presents a modified version of the gain as-
signment technique in [4, 2, 14] for recursive quantized con-
trol design. Consider the following first-order system:

η̇ = φ(η ,δ1, . . . ,δm)+v (15)

where η ∈ R is the state,v ∈ R is the control input,
δ1, . . . ,δm∈R represent the disturbance inputs, the nonlinear
functionφ(η ,δ1, . . . ,δm) satisfies

|φ(η ,δ1, . . . ,δm)| ≤ ψφ (|[η ,δ1, . . . ,δm]T |) (16)

with ψφ ∈ K∞. DefineVη(η) = αV(|η |) with αV(s) = 1
2s2

for s∈R+. Recall that sgn represents the standard sign func-
tion.

Lemma 1 Consider system(15). For any constant0 < c <
1, ε > 0, ι > 0 andχ1

η , . . . ,χm
η ∈K∞, one can find a smooth,

odd, strictly decreasing and radially unboundedκ such that
if

v∈ {κ(η +aδm+1+sgn(η)δm+2) : |a| ≤ 1} (17)

with δm+1,δm+2 ∈ R+, then it holds that

Vη(η) ≥ max
k=1,...,m

{

χk
η(|δk|),αV

(

δm+1

c

)

,ε
}

⇒ ∇Vη(η)η̇ ≤−ιVη(η). (18)

The proof of Lemma 1 is in Subsection 4.1.

Remark 5 The existence ofδm+2 ≥ 0 in (17)does not influ-
ence the ISS property of theη-system. Intuitively, the term
sgn(η)δm+2 with δm+2 ≥ 0 consolidates the negative feed-
back strength ofη . See the proof of Lemma 1 for details.

3.3 Recursive Control Design

Definee1 = y. Consider the[eT
0 ,e1,ξ2, . . . ,ξn]

T -system:

ė0 = Ae0 + φ0(e1,d,w) (19)

ė1 = ξ2 + φ1(e0,e1,d) (20)

ξ̇i = ξi+1 + φi(e1,ξ2,w), 2≤ i ≤ n−1 (21)

ξ̇n = u+ φn(e1,ξ2,w) (22)

where

φ1(e0,e1,d) = L2y+(x2−L2y− ξ2)+ f1(y,d)

φi(e1,ξ2,w) = Li+1yq−Li(ξ2 +L2yq), 2≤ i ≤ n−1

φn(e1,ξ2,w) = −Ln(ξ2 +L2yq).

We get (20) from thex1-subsystem (1) using the fact that
(x2−L2e1−ξ2) is the first element of vectore0. We get (21)
and (22) from (9) and (10) by usingyq = y+w = e1 +w.

We will construct a new[eT
0 ,e1, . . . ,en]

T -system consisting
of ISS subsystems obtained through a recursive design of
the [eT

0 ,e1,ξ2, . . . ,ξn]
T -system. The ISS-Lyapunov function

V0 for the e0-subsystem is defined in Subsection 3.1. For
1≤ i ≤ n, eachei -subsystem will be designed with an ISS-
Lyapunov function candidate

Vi(ei) = αV(|ei |) (23)

whereαV(s) = 1
2s2 for s∈ R+. In the following discussions,

we simply useVi instead ofVi(ei) for 0 ≤ i ≤ n. Denote
ēi = [eT

0 ,e1, . . . ,ei ]
T andξ̄i = [ξ2, . . . ,ξi ]

T .
In this subsection, we suppose thatµ is constant and con-
sider only the case of|e1| = |y| ≤ Mµ . From (5), this means
|w| = |yq−y| ≤ µ .

3.3.1 Thee0-subsystem

Defineγ1
0 = χy

0 ◦α−1
V and χ µ

0 = χw
0 . Then, from (14), we

have

V0 ≥ max{γ1
0(V1),χd

0 (|d|),χ µ
0 (µ)}

⇒ ∇V0ė0 ≤−α0(V0). (24)

3.3.2 Thee1-subsystem

Thee1-subsystem can be rewritten as

ė1 = ξ2−e2+(φ1(e0,e1,d)+e2)

:= ξ2−e2+ φ∗
1(ē2,d) (25)

with the new state variablee2 to be defined below. From
Assumption 2 and the definition ofφ1, we can find aψφ∗

1
∈

K∞ such that|φ∗
1 (ē2,d)| ≤ ψφ∗

1
(|[ēT

2 ,dT ]T |).
Define a set-valued mapS1 as

S1(e1,µ) = {κ1(e1 +aµ) : |a| ≤ 1} (26)

with κ1 smooth, odd, strictly decreasing and radially un-
bounded, to be determined later. State variablee2 is defined
as

e2 =











ξ2−maxS1(e1,µ), if ξ2 ≥ maxS1(e1,µ);

ξ2−minS1(e1,µ), if ξ2 < minS1(e1,µ);

0, otherwise.

(27)

Then, we haveξ2−e2 ∈ S1(e1,µ).
For anyγ0

1 ,γ2
1 ∈ K∞, chooseχ0

1 = γ0
1 ◦α0 and χ2

1 = γ2
1 ◦

αV . Then,γ0
1(V0) = χ0

1 ◦α−1
0 (V0) ≥ χ0

1(|e0|) andγ2
1(V2) =

χ2
1 ◦α−1

V (V2) = χ2
1(|e2|). With Lemma 1, for any specified

0 < c1 < 1, ε1 > 0, ι1 > 0, γ0
1 ,γ2

1 ,χd
1 ∈ K∞, we can find a

smooth, odd, strictly decreasing and radially unboundedκ1

such that thee1-subsystem withξ2 − e2 ∈ S1(e1,µ) is ISS
with V1 satisfying

V1 ≥ max
{

γ0
1(V0),γ2

1(V2),χd
1 (|d|),χ µ

1 (µ),ε1

}

⇒ ∇V1ė1 ≤−ι1V1 (28)

whereχ µ
1 (s) = αV(s/c1) for s∈ R+.



Remark 6 Sinceκ1 is strictly decreasing, we can explicitly
represent

maxS1(e1,µ) = κ1(e1− µ), (29)

minS1(e1,µ) = κ1(e1 + µ). (30)

A set-valued map S1 with smooth, odd, strictly decreasing
and radially unboundedκ1 and the definition of e2 are shown
in Fig. 2.
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Fig. 2: Bounds of set-valued mapS1 and the definition ofe2.

Remark 7 In standard backstepping [7],ξ2 is usually con-
sidered as the virtual control of the e1-subsystem. To take
the quantization error w into account, the virtual control law
should be a function of w. However, the discontinuity of w
leads to discontinuity of the virtual control law, which is hard
to handle by directly taking the derivative. The set-valued
map S1 defined in(26)overcomes this problem. As shown in
Fig. 2, we can just steerξ2 to the region with smooth bounds
maxS1 andminS1, instead of drivingξ2 to some specific dis-
continuous virtual control law.

3.3.3 Theei-subsystem (2≤ i ≤ n)

When 3≤ i ≤ n, for each 2≤ k≤ i −1, suppose that

H1 a set-valued mapSk is defined as

Sk(e1, ξ̄k,µ) = {κk(ξk− pk) : pk ∈ Sk−1(e1, ξ̄k−1,µ)}

whereκk is smooth, odd, strictly decreasing and radi-
ally unbounded;

H2 the new state variableek+1 is defined as

ek+1 =































ξk+1−maxSk(e1, ξ̄k,µ),

if ξk+1 ≥ maxSk(e1, ξ̄k,µ);

ξk+1−minSk(e1, ξ̄k,µ),

if ξk+1 < minSk(e1, ξ̄k,µ);

0, otherwise.

Remark 8 It is worth noting that, sinceκk is strictly de-
creasing, it holds:

maxSk(e1, ξ̄k,µ) = κk(ξk−maxSk−1(e1, ξ̄k−1,µ)), (31)

minSk(e1, ξ̄k,µ) = κk(ξk−minSk−1(e1, ξ̄k−1,µ)). (32)

Lemma 2 Consider the[eT
0 ,e1,ξ2, . . . ,ξn]

T -system in(19)–
(22) with |e1| ≤ Mµ . For 2 ≤ i ≤ n, with S1(e1,µ) and e2
defined in(26) and (27) and Assumptions H1 and H2 satis-
fied for each2≤ k≤ i−1 if 3≤ i ≤ n, for any variable ei+1,
when ei 6= 0, we can derive the ei-subsystem to

ėi = ξi+1−ei+1+ φ∗
i (ēi+1,d,µ ,w, ξ̄i) (33)

where

|φ∗
i (ēi+1,d,µ ,w, ξ̄i)| ≤ ψφ∗

i
(|[ēT

i+1,d
T ,µ ]T |) (34)

with ψφ∗
i
∈ K∞. Specifically,ξn+1 = u.

The proof of Lemma 2 is in Subsection 4.2.
Define a set-valued mapSi as

Si(e1, ξ̄i ,µ) = {κi(ξi − pi) : pi ∈ Si−1(e1, ξ̄i−1,µ)} (35)

with κi smooth, odd, strictly decreasing and radially un-
bounded, to be defined later. Defineei+1 as

ei+1 =































ξi+1−maxSi(e1, ξ̄i ,µ),

if ξi+1 ≥ maxSi(e1, ξ̄i ,µ);

ξi+1−minSi(e1, ξ̄i ,µ),

if ξi+1 < minSi(e1, ξ̄i ,µ);

0, otherwise.

(36)

Then, we haveξi+1−ei+1 ∈ Si(e1, ξ̄i ,µ).
From the definition ofei (i.e., ek+1 with k = i − 1) in
Assumption H2, in the case ofei 6= 0, for all pi ∈
Si−1(e1, ξ̄i−1,µ), it holds that|ξi − pi | ≥ |ei | and sgn(ξi −
pi) = sgn(ei), which means sgn(ξi − pi −ei) = sgn(ei), and
thusξi − pi = ei +(ξi − pi −ei) = ei + sgn(ei)|ξi − pi −ei|.
Note thatξi+1 − ei+1 ∈ Si(e1, ξ̄i ,µ). There always exists a
pi ∈ Si−1(e1, ξ̄i−1,µ) such thatξi+1 − ei+1 = κi(ξi − pi) =
κi(ei +sgn(ei)|ξi − pi −ei|).
With Lemma 1, for any εi > 0, ιi > 0,
γ0
i , . . . ,γ i−1

i ,γ i+1
i ,χd

i ,χ µ
i ∈ K∞, we can find a smooth,

odd, strictly decreasing and radially unboundedκi such that
theei-subsystem withξi+1−ei+1 ∈ Si(e1, ξ̄i ,µ) is ISS with
Vi satisfying

Vi ≥ max
k=0,...,i−1,i+1

{

γk
i (Vk),χd

i (|d|),χ µ
i (µ),εi

}

⇒ ∇Viėi ≤−ιiVi . (37)

By default,Vn+1 := αV(|en+1|). The true control inputu =
ξn+1 occurs with theen-subsystem, and we seten+1 = 0.

3.3.4 Realizable Quantized Controller

From (37) withi = n, our desired quantized controlleru can
be chosen in the following form:

p∗2 = κ1(y
q) (38)

p∗i = κi−1(ξi−1− p∗i−1), 3≤ i ≤ n (39)

u = κn(ξn− p∗n). (40)

In the case of|y| ≤ Mµ , we have|w| = |yq − y| ≤ µ and
thusκ1(yq) = κ1(y+w) = κ1(e1 +w) ∈ S1(e1,µ). It is then
directly checked that

p∗2 ∈ S1(e1,µ) ⇒··· ⇒ p∗i ∈ Si−1(e1, ξ̄i−1,µ)

⇒··· ⇒ u = ξn+1−en+1 ∈ Sn(e1, ξ̄n,µ)



whereen+1 = 0. Thus, if|y| ≤ Mµ , then the quantized con-
trol law (38)–(40) guarantees (28) and (37).

3.4 Cyclic-small-gain based Synthesis

Denotee = ēn. For 0≤ i ≤ n, eachei-subsystem has been
made ISS (or more precisely, practically ISS). In this sub-
section, we fine tune the ISS-gains such that thee-system
satisfies the cyclic-small-gain condition [6, 12]. The system
graph of thee-system is shown in Fig. 3.

f f f f� · · · � � � · · · �j s R
* *3e0 ei ei+1 en

Fig. 3: The system graph of thee-system.

According to the recursive design, given the ¯ei−1-subsystem,
by designing the set-valued mapSi for theei-subsystem, we
assign the ISS gainsγk

i (1≤ k≤ i −1) such that

γk+1
k ◦ γk+2

k+1 ◦ · · · ◦ γ i−1
i−2 ◦ γ i

i−1◦ γk
i < Id. (41)

Applying this reasoning repeatedly, thee-system satisfies the
cyclic-small-gain condition in [6, 12].
An ISS-Lyapunov function is constructed as:

V(e) = max
0≤i≤n

{σi(Vi(ei))} (42)

with σ1(s) = s, σi(s) = γ̂2
1 ◦ · · · ◦ γ̂ i

i−1(s) (2 ≤ i ≤ n) and

σ0(s) = max1≤i≤n{σi ◦ γ̂0
i (s)} for s∈ R+, where theγ̂(·)

(·) ’s

areK∞ functions smooth on(0,∞) and slightly larger than

the correspondingγ(·)
(·) ’s and still satisfy the cyclic-small-gain

condition.
Recall |d| ≤ d̄. Denoteε0 = 0. We represent the maximal
influence ofd, µ andεi (1≤ i ≤ n) as

ϑ = max
0≤i≤n

{

σi ◦ χd
i (d̄),σi ◦ χ µ

i (µ),σi(εi)
}

. (43)

Using the Lyapunov-based cyclic-small-gain theorem in
[12], we achieve that if|y| ≤ Mµ , then thee-system with
quantized control law (38)–(40) satisfies

V(e) ≥ ϑ ⇒ ∇V(e)ė≤−α(V(e)) (44)

wherever∇V(e) exists, withα positive definite. Note that
∇V(e) exists almost everywhere [12].

In the recursive design approach, we can make theγ(·)
(·) ’s (and

thus theγ̂(·)
(·) ’s) arbitrarily small to get arbitrarily smallσi ’s

(0≤ i ≤ n, i 6= 1). We can also select theχd
i ’s (0≤ i ≤ n),

theεi ’s (1≤ i ≤ n) and theχ µ
i ’s (0≤ i ≤ n, i 6= 1) arbitrarily

small. In this way, for arbitrarily smallϑ0 > 0, we can design
the gains such that max0≤i≤n

{

σi ◦ χd
i (d̄),σi(εi)

}

≤ ϑ0 and
max0≤i≤n, i6=1

{

σi ◦ χ µ
i (µ)

}

≤ ϑ0.
Recallχ µ

1 (s) = αV(s/c1) for s∈ R+ defined in (28). If|y| ≤
Mµ , then quantized control law (38)–(40) guarantees

V(e) ≥ max{αV(µ/c1),ϑ0}⇒ ∇V(e)ė≤−α(V(e)) (45)

wherever∇V(e) exists.

3.5 Dynamic Quantization

Define Θ = αV(Mµ). Then, µ = α−1
V (Θ)/M. Dynamic

quantization can be determined by designing an update law
for Θ. Denotex = [x1, . . . ,xn]

T andξ = [ξ2, . . . ,ξn]
T . Re-

call e= [e0, . . . ,en]
T and the definition ofei for i = 0, . . . ,n.

The transformed state variableecan be considered as a con-
tinuous function ofx,ξ ,µ . Note thatµ = α−1

V (Θ)/M. De-
notee= e(x,ξ ,Θ). In dynamic quantization,Θ is piece-wise
constant on the time-line and denoted asΘ(t). Clearly, the
piece-wise constant adjustment ofΘ leads to jumps ofe.
Due to space limitation, some results in this subsection are
presented without proofs. However, the proofs are available
from the authors upon request.

3.5.1 Zooming-out Stage

The design of the zooming-out stage is motivated by [11].
In this stage, the control inputu and the stateξ of the ob-
server are set to be zero. The small-time norm-observability
assumed in Assumption 1 guarantees that fordt > 0, there
exists aϕ ∈ K∞ such that

|x(tk +dt)| ≤ ϕ(‖y‖[tk,tk+dt ]) (46)

for all k ∈ Z+. Considering the definitions ofV ande, for
dt > 0, there exists āϕ ∈ K∞ such that

|V(e(x(tk +dt),0,0))| ≤ ϕ̄(‖y‖[tk,tk+dt ]) (47)

for all k∈ Z+.
The forward completeness assumed in Assumption 1 guar-
antees that we can increaseΘ fast enough to dominate the
growth rate ofϕ̄(|y|). Thus, we can design the zooming-
out logic to increaseΘ (and thusµ) fast enough such that at
some timetk∗ > 0 with k∗ ∈ Z+, it holds that

Θ(tk∗) ≥ ϕ̄(‖y‖[tk∗−dt ,tk∗ ]) ≥ max{V(e(x(tk∗),0,0)),ϑ0}.
(48)

From the definition ofSi in (26) and (35), it can be observed
that increase ofµ (and thusΘ) leads to increase of maxSi

and decrease of minSi . Using the definition ofei+1, increase
of Θ leads to decrease or hold of|ei+1| (and thus decrease or
hold ofV(e)). Note thatξ (tk∗) = 0. From (48), we achieve

Θ(tk∗) ≥ max{V(e(x(tk∗),ξ (tk∗),Θ(tk∗))),ϑ0}. (49)

3.5.2 Zooming-in Stage

With the help of Assumption 4, in the constructive control
design procedure, we can choosec1 satisfying 1/M < c1 <
1. Then, from the definitionΘ = αV(Mµ), one can find a
positive definiteρz

1 such that

αV(µ/c1) ≤ (Id−ρz
1)(Θ). (50)

Suppose that at some timetk > 0 with k∈ Z+, it holds that

Θ(tk) ≥ max{V(e(x(tk),ξ (tk),Θ(tk))),ϑ0}. (51)

We want to find aQΘ
in : R+ → R+ such thatΘ(tk+1) =

QΘ
in(Θ(tk)) satisfies

Θ(tk+1) ≥ max{V(e(x(tk+1),ξ (tk+1),Θ(tk+1))),ϑ0} (52)



wheretk+1− tk = dt .
One can find a positive definiteρz

2 such that (Id −
ρz

2) ∈ K∞ and (Id − ρz
2)(s) ≥ max{(Id − ρz

1)(s),s− dt ·
min(Id−ρz

1)(s)≤v≤sα(V)} for s∈ R+. Define

Ξ = Id−ρz
2. (53)

Condition (51) implies V(e(x(tk),ξ (tk),Θ(tk))) ≤
αV(Mµ(tk)). From (45) and (50), if (51) holds, then

V(e(x(tk+1),ξ (tk+1),Θ(tk))) ≤ max{Ξ(Θ(tk)),ϑ0}. (54)

Using the property of continuous functions, we can find a
positive definiteρz

3 < Id such that for allx∈ R
n, ξ ∈ R

n−1,
Θ > 0 andh≥ 0, it holds that

|V(e(x,ξ ,Θ−ρz
3(h)))−V(e(x,ξ ,Θ))| ≤ h. (55)

Define

ΘΘ
in(Θ) = Θ−ρz

3

(

Θ−max{Ξ(Θ),ϑ0}
2

)

. (56)

Then, (54), (55) and (56) imply

V(e(x(tk+1),ξ (tk+1),Θ(tk+1)))

≤ Θ(tk)+max{Ξ(Θ(tk)),ϑ0}
2

, (57)

and (51) and (56) imply

Θ(tk+1) ≥
Θ(tk)+max{Ξ(Θ(tk)),ϑ0}

2
≥ ϑ0. (58)

Properties (57) and (58) together guarantee (52).

Lemma 3 Suppose thatΘ(tk∗) ≥ ϑ0 with k∗ ∈ Z+. Then,
the zooming-in logicΘ(tk+1) = QΘ

in(Θ(tk)) for k ∈ Z+ with
QΘ

in defined in(56)guarantees

lim
k→∞

Θ(tk) = ϑ0. (59)

The proof of Lemma 3 is in Subsection 4.3. The motions of
Θ(t) andV(e(x(t),ξ (t),Θ(t))) in the zooming-in stage are
shown in Fig. 4.

-
tk tk+1 tk+2

a

a
a

a
a

a

0

ϑ0

W(t)

Θ(t)

Fig. 4: Motions ofΘ(t) andW(t) = V(e(x(t),ξ (t),Θ(t))) in
the zooming-in stage.

With the appropriately designed zooming-in logic in
(56), it always holds thatV(e(x(t),ξ (t),Θ(t))) ≤ Θ(t)
in the zooming-in stage. Thus, the closed-loop
signals are bounded. By using (59), we have
limt→∞V(e(x(t),ξ (t),Θ(t))) ≤ ϑ0. Recall the defini-
tion of V in (42). It can be observed thaty = x1 = e1

ultimately converges to within the region|y| ≤ α−1
V (ϑ0).

By choosingϑ0 arbitrarily small, outputy can be steered to
within an arbitrarily small neighborhood of the origin.
RecallΘ = αV(Mµ). With QΘ

in defined in (56), the zooming-
in logic for µ is designed as

Qin(µ) =
1
M

α−1
V ◦QΘ

in ◦αV(Mµ). (60)

3.6 Main Result

The main result of this paper is summarized in Theorem 1.

Theorem 1 Consider system(1)–(4) with output quantiza-
tion satisfying(5). Under Assumptions 1–4, the closed-loop
signals are bounded, and in particular, the output y can be
steered to within an arbitrarily small neighborhood of the
origin with the quantized output-feedback controller com-
posed of reduced-order observer(9)–(10), control law(38)–
(40), and dynamic quantization of form(6) with zooming-in
dynamics Q= Qin defined in(60).

4 PROOFS OF LEMMAS 1–3

4.1 Proof of Lemma 1

Using (16), one can findψη
φ ,ψδ1

φ , . . . ,ψδm
φ ∈ K∞ such that

|φ(η ,δ1, . . . ,δm)| ≤ ψη
φ (|η |)+

m

∑
k=1

ψδk
φ (|δk|). (61)

Note thatψη
φ (s)+ ∑m

k=1 ψδk
φ ◦

(

χk
η
)−1 ◦αV(s)+ ι

2s is aK∞
function ofs. With Lemma 1 in [2], for any 0< c < 1 and
ε > 0, one can find aρ : R+ → R+ positive, nondecreasing
and smooth on(0,∞), such that

(1−c)ρ((1−c)2s2)s

≥ ψη
φ (s)+

m

∑
k=1

ψδk
φ ◦

(

χk
η

)−1
◦αV(s)+

ι
2

s (62)

for all s≥
√

2ε. Defineκ(r) = −ρ(r2)r for r ∈ R. Then,κ
is smooth, odd, strictly decreasing and radially unbounded.
Recall Vη(η) = αV(|η |) = 1

2η2. Consider the case of

Vη(η) ≥ maxk=1,...,m

{

χk
η(|δk|),αV

(

δm+1
c

)

,ε
}

. We have

|δk| ≤
(

χk
η

)−1
◦αV(|η |), 1≤ k≤ m (63)

δm+1 ≤ cα−1
V (Vη(η)) = c|η | (64)

|η | ≥
√

2ε (65)

The v satisfying (17) can be represented asv = κ(η ′) =
−ρ(η ′2)η ′ where η ′ = η + sgn(η)|δm+2| + aδm+1 with
|a| ≤ 1. With 0 < c < 1 and (64), whenη 6= 0, we have
sgn(η ′) = sgn(η), |η ′| ≥ |η +aδm+1| ≥ (1−c)|η | and thus
ρ(η ′2)|η ′| ≥ (1−c)ρ((1−c)2η2)|η |.
From (61)–(65) and the discussion above, we obtain

∇Vη(η)(φ(η ,δ1, . . . ,δm)+v)

= η(φ(η ,δ1, . . . ,δm)−ρ(η ′2)η ′)

≤ |η ||φ(η ,δ1, . . . ,δm)|− |η |ρ(η ′2)|η ′|

≤ |η |
(

ψη
φ (|η |)+

m

∑
k=1

ψδk
φ ◦

(

χk
η

)−1
◦αV(|η |)

− (1−c)ρ((1−c)2η2)|η |
)

≤ − ι
2
|η |2 = −ιVη(η). (66)

This ends the proof.



4.2 Proof of Lemma 2

We simply useSk instead ofSk(e1, ξ̄k,µ) for 1≤ k ≤ i −1.
We only consider the time instants at whichei > 0. The proof
for the time instants at whichei < 0 is similar.
Consider the definition ofS1 in (26) and the iteration-type
definitions ofSk’s in Assumption H1. Recall (29), (30), (31)
and (32). The smoothness of theκ(·)’s implies the smooth-
ness of maxS1 with respect toe1 and the smoothness of
maxSk with respect toξk and maxSk−1 for 2 ≤ k ≤ i − 1.
Repeatedly using the property of the composition of smooth
functions, we can see maxSi−1 is smooth with respect to
[e1, ξ̄ T

i−1]
T and thus∂ maxSi−1/∂ [e1, ξ̄ T

i−1]
T is continuous

with respect to[e1, ξ̄ T
i−1]

T . In the case ofei > 0, the dynamics
of ei can be derived as

ėi = ξ̇i −
∂ maxSi−1

∂ [e1, ξ̄ T
i−1]

T
[ė1,

˙̄ξ T
i−1]

T

= ξi+1 + φi(e1,ξ2,w)− ∂ maxSi−1

∂ [e1, ξ̄ T
i−1]

T
[ė1,

˙̄ξ T
i−1]

T

:= ξi+1−ei+1+ φ∗
i (ēi+1,d,µ ,w, ξ̄i) (67)

Specifically,ξn+1 = u. We used (20), (21) and (22) to get the
last equality above.
Recall |e1| ≤ Mµ ⇒ |w| ≤ µ . From (20), (21) and
(22), we can see|φi(e1,ξ2,w)| is bounded by aK∞

function of |[e1,ξ2,µ ]T |, and |[ė1,
˙̄ξ T
i−1]

T | is bounded by
a K∞ function of |[ēT

1 ,d,µ , ξ̄ T
i ]T |. Thus, we achieve

that |φ∗
i (ēi+1,d,µ ,w, ξ̄i)| is bounded by aK∞ function of

|[ēT
i+1,d,µ , ξ̄ T

i ]T |. To prove (34), we show that|ξ̄i | is
bounded by aK∞ function of |[ēT

i ,µ ]T |. As pointed out in
[13], this can be achieved by proving[ēT

i ,µ ]T = 0⇒ ξ̄i = 0.
By using the definitions ofS1 ande2 in (26) and (27) and the
definitions ofSk andek+1 in Assumptions H1 and H2, we
have

S1 = {0}⇒ ξ2−e2 = 0⇒ ξ2 = 0⇒ ··· ⇒
Sk = {0}⇒ ξk+1−ek+1 = 0⇒ ξk+1 = 0, 2≤ k≤ i −1.

This ends the proof.

4.3 Proof of Lemma 3

Consider the following two cases.

(a) Ξ(Θ(tk)) ≥ ϑ0. From the definition ofΞ in (53),
one can find a positive definite functionρ∗

1 such that

ρz
3

(

s−Ξ(s)
2

)

= ρz
3

(

ρz
2(s)
2

)

≥ ρ∗
1(s) for s∈ R+. In the

case ofΞ(Θ(tk)) ≥ ϑ0, we have

Θ(tk+1) = Θ(tk)−ρz
3

(

Θ(tk)−Ξ(Θ(tk))
2

)

≤ Θ(tk)−ρ∗
1(Θ(tk)) (68)

which guarantees that there exists atko > 0 with ko ∈Z+

such thatΞ(Θ(tko)) < ϑ0, and equivalently,Θ(tko) <
Ξ−1(ϑ0).

(b) Ξ(Θ(tk)) < ϑ0. DefineΘ′(tk) = Θ(tk)−ϑ0 for k∈ Z+.
Then, we obtain

Θ′(tk+1) = Θ′(tk)−ρz
3

(

Θ′(tk)
2

)

(69)

which is a asymptotically stable first-order discrete-
time system [5], and implies limk→∞ Θ′(tk) = 0.

Recall the definition ofΞ in (53). We can seeΞ−1 > Id and
Ξ−1(ϑ0) is larger thanϑ0. Considering both cases (a) and
(b), we have limk→∞ Θ(tk) = ϑ0. This ends the proof.

5 CONCLUSIONS

This paper makes significant progress on the challenging, yet
important, problem of quantized output-feedback control of
nonlinear systems, by developing a new tool based on re-
cent cyclic-small-gain techniques [6, 12]. The result shows
that dynamic quantization can be implemented even with a
1-bit uniform quantizer. Furthermore, the influence of the
external disturbance can be attenuated to an arbitrarily small
level. It is our firm belief that the proposed design tool will
prove helpful for quantized feedback control of other impor-
tant classes of nonlinear systems.
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