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Outline 
•  Networks, Sensing, Control, and Jamming 
•  What/when/how to sense, transmit, and 

control with limited opportunities 
•  Non-classical information in multi-agent DM 
•  Coping with unreliability partially caused by 

adversarial action 
•  Worst-case disruption strategies and 

corresponding control policies 
•  Conclusions  	
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Networked Control System 

  	
 P	


C	


sensor 

                  PI →  optimize 

S	


N	
N	
N	


v	
 z	


u	
 y	


w	


CCC'11 Plenary - July 22	




Variations around the Common Paradigm 
Networked Control System 

  	
 P	


C	


sensor 

                  PI →  optimize 

S	


N	
N	
N	


v	
 z	


u	
 y	


w	


CCC'11 Plenary - July 22	


Multiple agents 
distributed over a 
network interacting 
with limited 
information (on 
line and off line) 
under possibly 
conflicting 
objectives 	
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Acknowledgement: Scenario I 
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No acknowledgement: Scenario II 
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Scenario II: Information structure 
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Scenario I: Information structure 
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Delay, Limited Memory, 
Decentralization 
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Limited memory 
controller /
decentralized control 

	




Digital Channels: Quantization 
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Post-control quantizer 
 

	




Multiple Criteria / Games 
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Non-cooperating 
controllers /multiple 
objectives	




Limited Usage/Action 
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 Jammer  
disrupts  
intermittently 
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General Framework ���
	


•  Multiple decision makers (agents, players) 
picking policies (decision laws, strategies) 
leading to actions that evolve over time 

•  Policies are constructed based on 
information received (active as well as 
passive) and guided by individual utility or 
cost functions over the DM horizon 

–  Single DM => stochastic control 
–  Single objective => stochastic teams  
–  Otherwise ZS or NZS games, with NE 
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Coupling of Information and 
Actions ���

	

•  Is the quality of active and relevant 

information received by an agent 
affected by actions of other agents ? 

–  If no => the problem is generally “simple” 
–  If yes => it is generally “difficult” 
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Non-classical (limited memory) 
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x ~ N(0, σx
2)            w ~ N(0, σw
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J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ] 
 
J* = min min J(γ0 , γ1)  
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 B	




CCC'11 Plenary - July 22	


The “simplest” difficult problem 
(Witsenhausen, 1968) 

  	
 γ0	
 γ1	
+	

w	


y	
u0	
 u1	
x	


QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
affine policies are not optimal 
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The “simplest” difficult problem 
(Witsenhausen, 1968) 
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u0	
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QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
affine policies are not optimal 

When restricted to affine policies,  
there exist multiple local optima. 
Convexity is lost when restrictions 
are placed on memory.  
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The “simplest” difficult problem 
(Witsenhausen, 1968) 
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x ~ N(0, σx
2)            w ~ N(0, σw

2)  
 
J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ] 
 
J* = min min J(γ0 , γ1)  

A	
 B	


Note: This is a standard 2-stage DT LQG control 
problem except that control at stage 2 does 
not have access to what control at stage 1 had 
(memoryless controllers)  
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The “simplest” difficult problem 
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QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2 
A policy pair that beats the best linear one:  
u0 = γ0(x) = ε sgn (x) + λ x 
u1 = γ1(y) = E[ε sgn (x) + λ x | y] 
   optimize wrt  ε and λ   	
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The “simplest” difficult problem 
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u0	
 u1	
x	


QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2 
A more general one with improved perf:  
u0 = γ0(x) = ε Quant (x) + λ x 
u1 = γ1(y) = E[ε Quant (x) + λ x | y] 
    optimize wrt ε and λ for different   
     Quant(ization) schemes (Bansal, TB)  	
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Gaussian Test Channel 
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QTC(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 

optimal pair of decision laws  
(encoder/decoder) exists,  
and they are linear 
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However, with Conflicting Objectives  
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J*
 = min  max J(γ0 , γ1) 

         γ1       γ0  

Unique saddle-point solution, 
policies are linear     (TB) 
	




CCC'11 Plenary - July 22	


Recap 	
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QW =   k0 (u0 - x)2 + (u0 - u1)2         nonlinear 
QG =  - k0 (u0 - x)2 + (u0 - u1)2        linear 
QTC =  k0 (u0)2 + (u1 - x)2                    linear 
	


Not only the IS, but also the cost 
function is a determining factor 
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A message to take on a  
variation to LQG 
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+	


plant uncertainty, w	


sensor noise v	
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u	


y	


dx/dt = Ax+Bu+Dw	


u(t) = µ(yt)  -- memoryless controller 
  a difficult problem; solution not known 

w, v indep GWN 

Cost: (1/T) ∫ |z|2 + |u|R2	




Another Message 

	

   Quantization plays an important role 
    in the construction of policies that 
    improve upon best linear ones (even 
    though the channels are not discrete) 
 
   (Bansal-TB, TB, Yuksel-Tatikonda, Grover-Sahai, 

Lipsa-Martins)  
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Limited Actions  
            and Jamming 

 
  what/when/how to transmit, control,  

and jam with limited opportunities   



Limited Usage 
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 Jammer 
disrupts 
intermittentlyi 

 Threshold based 
optimal policies 
Event generation 
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Optimal Estimation over a Limited-Use 
Channel 

xk = Ε (zk)                     x∈X                y ∈ Y	

zk = bk + vk                             M < N	

     Given a “source” and a “memoryless channel”,  

for a given message length N, and number of 
channel uses M, and with some power constraint 
on the encoder, what is the minimum attainable 
value of the average distortion D(M,N) and a 
corresponding E & D pair? 

	


source	
 encoder/	

observer	
 channel	
 decoder/	


estimator	
 user	

{bk}	

0≤k≤N-1	


{xk}	

Pc(y|x)	

M uses 

{yk}	
 {^bk}	


Ε	
 D	
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Optimal Estimation  over a Limited-Use Channel 

xk = Ε (zk)                     x∈X    y ∈ Y	

zk = bk + vk                             M < N	


source	
 encoder/	

observer	
 channel	
 decoder/	


estimator	
 user	

{bk}	

0≤k≤N-1	


{xk}	

Pc(y|x)	

M uses 

{yk}	
 {^bk}	


Ε	
 D	


Order of actions at time k: 
1.  bk (or zk) becomes available to the sensor 
2.  Sensor makes a decision: transmit/shape or not 
3.  Estimator acts by generating ^bk 
4.  Estimation error is incurred and we move to k+1 

Dynamic & 
Non-classical 
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A Special Case: 2 string, iid, no noise 
         N=2, M=1, b0, b1 i.i.d. Gaussian, 0-mean, variance σ2 

         Perfect channel,  no noise 

         Estimation error:  e = E {(b0 - ^b0)2 + (b1 - ^b1)2 } 
 
        Open-loop sensor policy:  
         Arbitrarily picks transmission time ==>  eOL = σ2 
 

        Closed-loop sensor policy: 
   Transmit b0 if it lies outside [α, β], α < 0 < β; otherwise b1 

            Minimization problem faced by sensor: 
 
   e (α, β) = ∫ α β (b - E[b | b∈ [α, β] ] )2 f(b) db +  σ2 P{b0∉ [α, β] }	
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Special Case:  Solution 

     (α*, β*) = (- σ, σ)	

⇒ 	

      eCL

* = e (α*, β*) = [1 - √(2 / π e)] σ2 	

                           ≈ 0.52 σ2 	

⇒	

       48% improvement over the OL policy 
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Special Case:  Solution 

     (α*, β*) = (- σ, σ)	

⇒ 	

      eCL

* = e (α*, β*) = [1 - √(2 / π e)] σ2 	

                           ≈ 0.52 σ2 	

⇒	

       48% improvement over the OL policy 

 The knowledge of no action 
      is useful information !! 
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General Solution 
for linear systems (Imer, TB) 

Best sensor policy is of threshold form:  
At time k transmit zk if it is in a measurable set ¥(sk,tk), 
otherwise do not 
¥(s,t) obtained offline as the minimizer in a recursive equation 
satisfied by accumulated optimum error, e*(s,t), at each point (s,t): 
	

e*(s,t) = min¥(s,t) {e*(s-1, t-1) Prob(z ∈ ¥) + e*(s, t-1) Prob(z ∉ ¥) 
                              + average error at (s,t) due to decision at (s,t)} 
e*(t,t) = 0, e*(0,t) = t var(of input rv) 
 
Specific structure of ¥(s,t) depends on the pdf/pmf and PI. 
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Explicit Solution in a Special Case 
Continuous distribution f for b, f(-b) = f(b) 
No noise v (from source to sensor) -- n.l.o.g 
==>    ¥c(s,t) = [-β(s,t), β(s,t)]	

           β(s,t) = √ {e*(s-1, t-1) - e*(s, t-1)}	

Gaussian:  ε(s,t) := e*(s,t) / var(b)	

         ε(s, t) = ε(s-1, t-1)  - [(β(s,t))2

  -1][2Φ(β(s,t)) -1]	

                                     -(2/√2π) β(s,t) exp ( (β(s,t))2 / 2)	

           ε(t, t) = 0,   ε(0, t) = t	
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An Illustrative Example 
Problem: Given a time-horizon of length N=100, estimate the state of a  
                zero-mean i.i.d. Gaussian process with unit variance 
Design Criterion: The cumulative estimation error should not exceed 20. 
Solution I: Make 80 sensor transmissions picked at arbitrary times 
Solution II: Use the optimal sensor transmission and estimation policies 
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An Illustrative Example (cont.) 

 
Estimation error of 20 can be achieved with  

34 transmissions! 
 
This is approximately 58% improvement --- 

considerable savings in battery power (if 
sensor is power-limited) or transmission 
slots (if the sensor is time-slot limited. 
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An Illustrative Example (cont.) 
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Source as a Markov Process 
     bk+1 = A bk + wk                    {wk}   GWN  
Optimum sensor policy: keeps track of 3 variables (rk,sk,tk) 
              rk : # time units passed since last transmission 
At time k transmit bk if it is in a measurable set ¥(rk,sk,tk), 
otherwise do not. 
¥(r,s,t) obtained offline as the minimizer in a recursive equation 
satisfied by accumulated optimum error, e*(r,s,t), at each (r,s,t): 
	

e*(r,s,t) = min¥(r,s,t) {e*(1,s-1, t-1) Prob(bN-t ∈ ¥)  
                                  + e*(r+1,s, t-1) Prob(bN-t ∉ ¥) 
          + average error at (r,s,t) due to decision at (r,s,t)} 
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Again an interval solution 
   ¥c(r,s,t) = [α(r,s,t), β(r,s,t)] 
β(r,s,t) = ArbN-t-r  + √{e*(1,s-1, t-1) - e*(r+1,s, t-1)} 
α(r,s,t) = ArbN-t-r  - √{e*(1,s-1, t-1) - e*(r+1,s, t-1)} 
      ε(r,s,t) := e*(r,s,t) / ∑k=1

r A2(k-1)var(b0) 
         ε(r,s, t) = ε(1,s-1, t-1)  - [(ν(r,s,t))2

  -1][2Φ(ν(r,s,t)) -1] 

                                     -(2/√2π) ν(r,s,t) exp ( (ν(r,s,t))2 / 2) 
           ν(r,s,t) := √{e*(1,s-1, t-1) - e*(r+1,s, t-1)} 
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Multi-StepMarkov Process 
     bk+1 + a0 bk + … + an-1 bk-n+1 = wk                    {wk}   GWN  
Optimum sensing again keeps track of 3 variables (rk,sk,tk) 
              rk : # time units passed since last transmission 
At time k transmit bk if it is in a measurable set ¥(rk,sk,tk), 
otherwise do not. 
¥(r,s,t) obtained offline as the minimizer in a recursive equation 
satisfied by accumulated optimum error, e*(r,s,t), at each (r,s,t): 
	

e*(r,s,t) = min¥(r,s,t) {e*(1,s-1, t-1) Prob(bN-t ∈ ¥)  
                                  + e*(r+1,s, t-1) Prob(bN-t ∉ ¥) 
           + average error at (r,s,t) due to decision at (r,s,t)} 



Limited Usage 
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General Solution 
for linear-quadratic systems 

(Imer, TB) 
Best control policy is of threshold form: 
  
At time k generate a control signal uk and transmit it 
if the state or its conditional mean is in a measurable  
set ¥C(sk,tk); otherwise do not	

 
Specific structure of ¥C(sk,tk) depends on the pdf/pmf  
of system and channel noises, whether control-plant 
communication is noisy, and also on PI. 
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Numerical Solutions 
Numerical integration was used to compute the	

recursions Δ(s,t) , which led to thresholds τ(s, t) 	

	

Implemented the optimal control with M actions 	

for an N-stage problem (N=20). Computed J(M,N)

*	


based on sample paths, and for different M values	


Times of control action ==>	
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 M	
    J*
(M,N)	
     %	


 1	
  96.4266	
 203.9327	

 2	
  68.1907	
 114.9343	

 3	
  47.2060	
  48.7914	

 4	
  44.0160	
  38.7366	

 5	
  39.8642	
  25.6503	

 6	
  37.1557	
  17.1132	

 7	
  35.6168	
  12.2627	

 8	
  34.1551	
   7.6555	

 9	
  33.6935	
   6.2005	

 10	
  33.6913	
   6.1936	


 M	
   J*
(M,N)	
     %	


 11	
  33.2445	
   4.7853	

 12	
  32.9262	
   3.7820	

 13	
  32.8267	
   3.4684	

 14	
  32.4936	
   2.3249	

 15	
  32.1082	
   1.2037	

 16	
  31.9824	
   0.8072	

 17	
  31.8822	
   0.4914	

 18	
  31.8417	
   0.3637	

 19	
  31.7337	
   0.0233	

 20	
  31.7263	
        0	
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Link Failures / Lossy Transmission 
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Lossy Transmission 

 xk+1 = f(xk, vk, wk),    k = 0,1,… 
   vk = αk uk    or        vk = vk-1   if αk = 0 
   yk = βk zk                          zk = h(xk, wk) 

  {αk}, {βk}  independent i.i.d. Bernoulli 
   Prob(αk = 0) = α,        Prob(βk = 0) = β 
    {wk}    i.i.d.  plant / channel noise  
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Lossy Transmission 
 xk+1 = f(xk, vk, wk),    k = 0,1,… 
   vk = αk uk    or        vk = vk-1   if αk = 0 
   yk = βk zk                          zk = h(xk, wk) 

  {αk}, {βk}  independent  i.i.d.  Bernoulli 
   Prob(αk = 0) = α,        Prob(βk = 0) = β 
   	
 Control :     uk  = µk (Ik

TCP) 
  and can act  
          M out of N times 
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Lossy Transmission 
 xk+1 = f(xk, vk, wk),    k = 0,1,… 
   vk = αk uk    or        vk = vk-1   if αk = 0 
   yk = βk zk                          zk = h(xk, wk) 

  {αk}, {βk}  independent  i.i.d.  Bernoulli 
   Prob(αk = 0) = α,        Prob(βk = 0) = β 
	


PI :   Eµ {q(xN) + ∑k g(xk, vk)} =: J(µ0
N, N) 
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LQG with erasure channels and 
limited transmissions 

 xk+1 = Axk + αk Buk + wk ,    k = 0,1,… 
   yk = βk xk      (or  yk =  xk + nk)                zk = xk 
Prob(αk = 0) = α,        Prob(βk = 0) = β 
          uk  is applied M times 
J(µ0

N, N) = Eµ {|xN|F
2 + ∑k |xk|Q

2 + αk|uk|R
2} 

     or    lim supN→ ∞ (1/N) J(µ0
N, N) 

	




Solution Summary 

•  Optimal cost-to-go takes into account 
the possibility of packet losses 

•  Propagation in two variables (s,t)  
•  Propagation of conditional mean and 

conditional covariance 
•  Decision to transmit or not based on 

thresholds / decision regions computed 
offline (Δ(s,t)= J0

(s,t) – J1
(s,t) = 0) 
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Limited Usage 
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With Adversarial Action 
(Gupta, Langbort, TB 2010)	


•  xk+1 = Axk + αk uk + wk,  k = 0, 1, …, N 
•  {αk}  a  0-1 variable, controlled by adversary, 
      Σk=0

N-1 (1-αk) = M < N 
•  uk = μk(Ik),   αk = ζk(Ik)    
   Ik = {x[0,k], α[0,k-1]}, k ≥ 1;  I0 = {x0} 
 
•  Cost: E { Σk=0

N-1  (xk+1)2 + αk (uk)2 } =: J(μ, ζ)
•  SP (if exists):  J(μ*, ζ) ≤ J(μ*, ζ*) ≤ J(μ, ζ*)  
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With Adversarial Action	

•  xk+1 = Axk + αk uk + wk,  k = 0, 1, …, N 
•  {αk} a 0-1 variable, controlled by adversary, 
      Σk=0

N-1 (1-αk) = M < N 
•  uk = μk(Ik),   αk = ζk(Ik)    
   Ik = {x[0,k], α[0,k-1]}, k ≥ 1;  I0 = {x0} 
•  Cost: E { Σk=0

N-1  (xk+1)2 + αk (uk)2 } =: J(μ, ζ)
•  SP (if exists):  J(μ*, ζ) ≤ J(μ*, ζ*) ≤ J(μ, ζ*)  
  

   Extended state:  (x, s, t) 
      s = # remaining jamming instances 
      t = N-k (# remaining stages) 
   Two possible transitions from (x, s, t):     

• No jammer action: (Ax+u+w, s, t-1) 
• Jammer action: (Ax+w, s-1, t-1) 
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With Adversarial Action 
--solution process--	


•  xk+1 = Axk + αk uk + wk,  k = 0, 1, …, N 
•  {αk} a 0-1 variable, controlled by adversary, 
      Σk=0

N-1 (1-αk) = M < N 
•  uk = μk(Ik),   αk = ζk(Ik)    
   Ik = {x[0,k], α[0,k-1]}, k ≥ 1;  I0 = {x0} 
•  Cost: E { Σk=0

N-1  (xk+1)2 + αk (uk)2 } =: J(μ, ζ)
•  SP (if exists):  J(μ*, ζ) ≤ J(μ*, ζ*) ≤ J(μ, ζ*)  
  

 Isaacs equation on the extended state space: 
      V(0,0)(x) = x2 
      V(s,t)(x) = infu maxα ε Ã(s,t) E{x2 + αu2 +  
                                    + V(š(α),t-1)(Ax + αu + w) } 
 where     š(α):=  s        if  α = 1      
                     =   s-1    if  α = 0 
and  Ã(s,t): allowable values of α at (s,t)            
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With Adversarial Action 
the solution for M=1 and general N	


•  There exists a saddle-point solution (not in 
mixed strategies) 

•  There exists a recursively computable 
threshold τ(s,t)(x)  such that 
–  The jammer acts if |x| -τ(s,t)(x) ≥ 0 
–  The jammer does not act if  |x| -τ(s,t)(x) < 0 

•  V(s,t)(x) admits two separate expressions 
depending on whether |x| -τ(s,t)(x) is + or not 

•  Multi-dimensional case is qualitatively similar    
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Numerical study (A=2.5, σw = 1, N=3) 
Plot of τ(1,3) vs x  

Jammer is active except in the narrow strip	
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Numerical study (A=2.5, σw = 1, general N) 
Regions where jammer is active (dark)	
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Numerical study (σw = 1, N = 3, 5, 8, 9, 10) 
Plot of τ(1,N) vs x 	
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Message to be taken 
Opportunistic sensing, control, 

and decision making 

Limitations on usage leads 
to event driven actions, where  
events are also controlled or 
caused by adversarial action 
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Returning to NCIS  
•  Limited memory leads to non-classical IS 
•  Having limits on frequency of actions of 

agents leads to non-classical IS (NCIC) 
•  Decentralization leads to NCIS 
•  Delays or disruptions in transmission leads 

to NCIS 
•  Private information also leads to NCIS; 

how much to reveal through actions?   
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FERTILE GROUND 
                       FOR RESEARCH 



CCC'11 Plenary - July 22	


	


       THANKS ! 
	


                              	



