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Historical Perspective

Historical Perspective

‘Technology seems to advance in waves. Small advances in
science and technology accumulate slowly ... until a critical
level...

‘Woven into the rich fabric of technological history is an invisible
thread that has a profound effect on each of these waves...

‘This thread is the idea of feedback control.

Dennis Bernstein, History of Control, 2002
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Historical Perspective

Control Engineering Timeline
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Quantum Technology

Quantum Technology

Quantum technology is the application of quantum science to develop new
technologies.

This was foreshadowed in a famous lecture:

1959: Richard Feynman, Plenty of Room at the Bottom

“What | want to talk about is the problem of manipulating and
controlling things on a small scale.”
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Quantum Technology

Key drivers for quantum technology:

@ Miniaturization - quantum effects can dominate

o Microelectronics - feature sizes of 10s nm (Moore's Law)
e Nanotechnology - nano electromechanical devices have been made
sizing 10s nm

@ Exploitation of quantum resources

o Quantum Information - (ideally) perfectly secure communications
e Quantum Computing - algorithms with exponential speed-ups
o Metrology - ultra-high precision measurements

[Dowling-Milburn, 2003]
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Quantum Technology

Quantum technology revolutions
[Dowling-Milburn, 2003]

o First: [QM used to understand what exists]

e wave-particle duality
e semiconductors
e information age

@ Second: [QM used to engineer new things]

e artificial atoms
e man-made quantum states
e quantum engineering
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Quantum Control

Quantum Control

Watt used a governor to
control steam engines
- very macroscopic.

[Boulton and Watt, 1788,
London Science Museum]

Now we want to control
things at the quantum level

- e.g. atoms [ANU atom laser,
2007, Canberra]
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Quantum Control

Quantum control concerns the control of physical systems whose behavior
is dominated by the laws of quantum mechanics.

2003: Dowling and Milburn:

“The development of the general principles of quantum control
theory is an essential task for a future quantum technology.”
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Quantum Control

Types of Quantum Control:
Open loop - control actions are predetermined, no feedback is involved.

control
actions

controller quantum system
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antum Control

On the controllability of quantum-mechanical systems
Garng M. Huang and T. J. Tarn
Department of Systems Science and M ics, Washii University, St. Louis, Mi; {63130

John W. Clark
Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis,
Missouri 63130

{Received 25 August 1981; accepted for publication 10 June 1983)

The systems-theoretic concept of controllability is elaborated for quantum-mechanical systems,
sufficient conditions being sought under which the state vector ¢ can be guided in time to a chosen
point in the Hilbert space /#”of the system. The Schrodinger equation for a quantum object
influenced by adjustable external fields provides a state-evolution equation which is linear in ¢
and linear in the external controls {thus a bilinear control system). For such systems the existence
of a dense analytic domain .%,, in the sense of Nelson, together with the assumption that the Lie
algebra associated with the system dynamics gives rise to a tangent space of constant finite
dimension, permits the adaptation of the geometric approach developed for finite-dimensional
bilinear and nonlinear control systems. Conditions are derived for global controllability on the
intersection of %, with a suitably defined finite-dimensional submanifold of the unit sphere S ,
in 2. Several soluble examples are presented to illuminate the general theoretical results.

PACS numbers: 03.65.Bz, 02.20.Sv
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Quantum Control

Closed loop - control actions depend on information gained as the system
is operating.

quantum system

\ 4

con.trol information
actions
—
feedback |
controller (feedback loop)
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Quantum Control

Types of Quantum Feedback:
Using measurement

The classical measurement results are used by the controller (e.g.
classical electronics) to provide a classical control signal.

quantum system

]
o
> °. @ /
£ | measurement
classical
control
actions
classical
information
classical
controller
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Quantum Control

Not using measurement

The controller is also a quantum system, and feedback may involve a
flow of quantum information, as well as direct couplings.

quantum
control
actions

\ 4

L)

quantum system

- A\.
o

quantum
controller
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Quantum Control

[terative learning control

Same scheme for estimation from repeated identical experiments.
Fresh quantum system in each iteration.

)| Qsl
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time
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o
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A
classical learning/estimation algorithm
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Quantum Control

Examples of quantum feedback control

Adaptive phase measurement [Wiseman 1995]

- the first quantum measurement [Armen, Au, Stockton, Doherty, Mabuchi 2002]
feedback control experiment (a

very important experimental test)

System

Local Oscillator
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Quantum Control

Laser-cavity locking

[Huntington, James, Petersen,
- quantum LQG measurement Sayed Hassen, Heurs, 2009]

feedback control experiment

4 cavity
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Quantum Control

Coherent quantum feedback control

- quantum coherent feedback
control experiment

[Mabuchi, 2008]

[James, Nurdin, Petersen, 2008]
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Quantum Control

BECs and Atom Lasers

- measurement feedback control of  [Thomsen, Wiseman,
atom laser coherence (theory) 2002]

- stabilization via measurement [Wilson, Carvalho,

feedback (theory)

Hope, James 2007]

- multiloop measurement feedback

theor )
( Y) [Yanagisawa, James 2008]
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Quantum Control

BRI B AN

Matt James (ANU) Quantum Feedback Control 21 / 60



Some Quantum Mechanics

Some Quantum Mechanics

A little history
@ Black body radiation (Plank)

@ Photoelectric effect (Einstein)
e Atomic quantization (Bohr)
@ Quantum probability (Born)
@ Spontaneous and stimulated emission of light (Einstein)
e Matter waves (De Broglie)
e Matrix mechanics, uncertainty relation (Heisenberg)
@ Wave functions (Schrodinger)
e Entanglement (EPR)
@ Axiomatization, quantum probability (von Neumann)
X(1)
B() o “if Boutt

atom
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Some Quantum Mechanics

Non-commuting observables
[Q,P]= QP — PQ = ihl
Expectation
(@ = [ dlita. 0 dg

Heisenberg uncertainty

QAP = 3|16, PI)| = 5

Schrodinger equation

L O0Y(q,t) W 9%(q,t)
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Some Quantum Mechanics

The Postulates of Quantum Mechanics

@ Observables - self-adjoint operators on a Hilbert space $)

x 0 0 O

. 0 x» 0 O
X = 0 0 --- 0
0 0 0 x,

Represent physical quantities

position @
momentum P
spin o,
energy H
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Some Quantum Mechanics

@ States - allow for the calculation of probabilities and expectations of
observables

E[X] = (4X[¢), or E[X] = Tr[oX].

o Pure states [¢)) €

E.g.
1 1
P(x) = Cexp(—sz) or ¢ = 7 [ 1 ]
o Density operators p (self-adjoint, non-negative, trace one)
E.g.

R N
P=3 | ¢ 1
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Some Quantum Mechanics

@ Measurement - in a measurement, the numerical outcomes are the
eigenvalues of observables.

Probability of outcomes:

Prob[x;] = Tr[pPx]

outcomes

(numbers)
—_—

Zj

measurement
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Some Quantum Mechanics

e Conditioning - if a measurement result x; occurs, the state changes to

) PXJ pP
Tr[pPy]
before after
measurement measurement

This is known as the “projection postulate”
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Some Quantum Mechanics

e Evolution - U(t) unitary satisfies Schrodinger equation

. d
/haU(t) = H(t)U(t)

e states [Schrodinger picture]
[9(1)) = U(t)|4)

p(t) = U(t)pU(t)

o observables [Heisenburg picture]

X(t) = U(t)*XU(t),
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Some Quantum Mechanics

Example - Stern-Gerlach experiment

Classical
rediction
P What was Silver atoms
actually observed
A
% Furnace
Inhomogeneous

magnetic field

The observable representing spin in the z-direction is a 2 X 2 complex

matrix
(1 0
2=\ o0 -1

{]-a _1}

which correspond to spin up and spin down, respectively.

Measurement values are
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Some Quantum Mechanics

Compatible and incompatible observables

One of the key differences between classical and quantum mechanics
concerns the ability or otherwise to simultaneously measure several
physical quantities. In general it is not possible to exactly measure two or
more physical quantities with perfect precision if the corresponding
observables do not commute, and hence they are incompatible.

A consequence of this is lack of commutativity is the famous Heisenberg
uncertainty principle.

We may think of quantum mechanics as the description of physical
systems using a non-commutative probability theory.
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Some Quantum Mechanics

Classical probability

Classical physics is built on foundations of classical logic, which is closely

related to classical probability.

(2, F,P)
sample / T probability
Space events distribution
w A P(A) =prob.ofevent A
E(X) = expected value
of random variable X
Q

)

Matt James (ANU) Quantum Feedback Control
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Some Quantum Mechanics

Quantum probability
We may think of quantum mechanics as the description of physical
systems using a non-commutative probability theory.

(A,P)
events P state
(projections) P(P) = prob. of event P
random variables E(X) = expected value
(operators) X of random variable X

States may be defined using pure states |t)) or density operators p:
E[X] = (¢|X]¢), or E[X] = Tr[pX].

Algebras A of events describe information in both classical and quantum
probability.
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Some Quantum Mechanics

The spectral theorem tells us that a commutative quantum probability
space is equivalent to a classical probability space.

(¢,P) ——> (2,.7,P)

commutative

This is the mathematics corresponding to the measurement postulate.
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Example (spin)
Measurement in the x, y and z directions correspond to non-commuting
observables

/(01 0 /1 0
>x=\10) =\ =io) %270 =1

and so are incompatible (cannot be simultaneously diagonalized).
These correspond to distinct commutative subspaces:

QIv-szpz
( N

N
~
~

EN
(QZa}—zaPz)

14
(Qy’flﬁpy)
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Some Quantum Mechanics

Conditional expectation
Let X commute with a commutative subspace C. The conditional
expectation

X = 7(X) = E[X|C]

is the orthogonal projection of X € A onto C.

X is the minimum mean square estimate of X given C.

By the spectral theorem, X is equivalent to a classical random variable.
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Some Quantum Mechanics

Probe model for quantum measurement

system probe

outcomes

@ (numbers)
el | ——————

Zj

measurement model

Information about the system is transferred to the probe.
Quantum conditional expectation is well defined.
The von Neumann “projection postulate” is a special case.

In continuous time, this leads to quantum filtering.
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Some Quantum Mechanics
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Measurement Feedback Quantum Control

Measurement Feedback Quantum Control

quantum system

| measurement

oo
classical o
control
actions

classical
information
classical
controller
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Measurement Feedback Quantum Control

Quantum systems with inputs and outputs

external free field with

. cavity mode
input and output components
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Measurement Feedback Quantum Control

Schrodinger equation
dU(t) = {LdB*(t) — L*dB(t) — (%L*L + iH(u))dt}U(t)

where B(t) is a quantum Wiener process.

[Hudson-Parthasarathy (1984), Gardiner-Collett (1985)]

System operators X and output field B(t) evolve in the Heisenberg picture:
X(t) = Je(X) = U"(t)(X @ N U(t)
B(t) = U*(t)(/ ® B(t))U(t)
Measurement of the output field (e.g. amplitude quadrature observables)

Y(t) = B(t) + B*(¢)

B(t) Bou (1) Y(r) X()
R —— » @ filter —

detector

input system output measurement estimates
signal

Matt James (ANU) Quantum Feedback Control 40 / 60



Measurement Feedback Quantum Control

Dynamics for X(t) = j:(X)—a quantum Markov process (given u)—and
output Y(t):

dje(X) = je(LUO(X))dt + dB*(£)je([X, L]) + e ([L*, X])dB(t)
dY(t) = ji(L+ L*)dt+ dB(t) + dB*(t)

where

LX) = —i[X, H] + %L*[X, 1+ %[L*,X]L

Matt James (ANU) Quantum Feedback Control 41 / 60



Measurement Feedback Quantum Control

Quantum conditional expectation
7i(X) = ELi(X)|Y(5),0 < s < ]
Quantum filter [stochastic Schrodinger equation]

dre(X) = m(LYO(X))dt
+(me(XL + L*X) — me(X)me(L + L)) (dY (t) — me(L + L*)dt)

[Belavkin (1993), Carmichael (1993)]
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Conditional density operator j(t) is defined by

me(X) = tr[p(t)X]

For a two-level spin system, we use Bloch sphere coordinates:

§(1) = 201+ 5(2)ax + 9(D)oy + 2(1)o),
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Measurement Feedback Quantum Control

The quantum filter is then given by

The innovations process is given by dW/(t) = dY(t) — x(t)dkt.

The quantum filter is driven by the measurement signal Y(t) and can be
used for measurement feedback control.
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Measurement Feedback Quantum Control

Quantum optimal control (measurement feedback)

B(t) Bou (1) Y(t)
—_ > > HD
detector
u(t)
classical
) measurement
classical classical signal
controller
control
signal K

Problem: minimize
-
J(K) = IE[/ Ci(s)ds + Go(T)]
0
with respect to the controller K, where

a|y? 0 0 0
_ 2 _
Cl(“)_< 0 1+C21]u|2>’ C2_<0 C2>
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Measurement Feedback Quantum Control

Using properties of conditional expectation, the cost function can be
expressed in terms of the quantum conditional expectation

)
JK) = E /0 7o(Ca(u(5)))ds + 77(C)]

.
= E[;/O (1—2(t)+c1|u(t)|2)dt+%(1—2(T))].

This converts a quantum measurement feedback problem to a classical full
information control problem that can be solved using standard classical
optimal control methods.
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Measurement Feedback Quantum Control

Optimal measurement feedback controller:

dre(X) = m(LYO(X))dt
+(me(XL+ L*X) — we(X)me(L + L)) (dY(t) — me(L 4 L¥)dt)
u(t) = u(m,t)

Note the separation structure:
@ estimation part (filter, the equation for ;)

e control part (u*)

B(1) Bou (1) Y(r)
- ®
detector
u(t)
classical
. measurement
classical classlc‘z:l signal
control .
signal K

[Belavkin (1983), Doherty-Jacobs (1999), James (2005)]
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Measurement Feedback Quantum Control

Quantum risk-sensitive optimal control (measurement feedback)

Let R(t) be defined by

dR(t) _p

S = SGOR(), RO)=1.

Risk-sensitive cost (average of exponential cost)

JHK) = E[R*(T)e*(TIR(T)].

[James (2004, 2005)]
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Measurement Feedback Quantum Control

Can define an information state o!'(X) so that
0 G
JH(K) =E [0 (e"™)]
Optimal risk-sensitive measurement feedback controller:

dot(X) = o"((£LYD + uCy(u(t)))X))dt + ot (L + L*)dY(t)

u(t) = u(oy,t)
Modified stochastic Schrodinger equation: [James (2004, 2005)]
@ knowledge
@ purpose

Schrodinger’s cat

The study of quantum feedback control has practical and fundamental
value.
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Quantum Feedback Networks

Quantum Feedback Networks (QFN)

@ Quantum information is lost when measurements are made.
@ Coherent feedback loops need not involve measurements, and so
allow for the flow of quantum information. The controller is another

quantum system.

quantum
control
actions

quantum system

direct couplings quantum
information

quantum
controller

Matt James (ANU)
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[coherent feedback]
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Quantum Feedback Networks

Modern electrical circuit theory...

® builds on laws of physics (Maxwell, Faraday,
Ohm,...)

® evolved to meet the needs of electrical
system designers (Thevenin, Kirchhoff,...)

® includes
- device models
- rules for interconnection
- methods for analysis, simplification, and
synthesis

Matt James (ANU) Quantum Feedback Control 51 / 60



Quantum Feedback Networks

In a quantum feedback network (QFN)
@ The nodes are open quantum systems

@ The branches are

e direct physical couplings
O—0O

or
e indirect couplings using freely travelling quantum fields serving as

‘quantum wires’.

[Yurke-Denker (1984), Carmichael (1993), Gardiner (1993), Wiseman-Milburn (1994),

Yanagisawa-Kimura (2001), Gough-James (2008,2010)]
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Quantum Feedback Networks

A quantum feedback network theory

optical
medium

mirror cavity 2

Az

Ay Ag = Ay
input
beam

cavity -.==27°
modes

dl pa d2

optical
interconnect
output

beam

[Wiseman-Milburn, 1994]

G1/\G2:(Gf2<1Gf1)Eﬂ(Gd1 D(]GdQ) .
(1, /7202 + /7 ai, -,

* * ; * *
Ajajar + Asayas — ig(agal — ajay))

[Gough and James (2008, 2010)]
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Quantum Feedback Networks

@ According to Mabuchi 2008:

“...a genuinely new category of control-theoretic problems
as it encompasses non-commutative signals and
quantum-dynamical transformations thereof”’ and

“ .. relatively little is yet known about the systematic
control theory of coherent feedback”.

S
<)
)

(a) Schematic (c) Photonic crystal cavity

[James, Nurdin & Petersen (2008)] [Mabuchi (2008)]
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Future Directions

Future Directions

Quantum Technology

Photonic module

® quantum computers - \ o amoscale

® quantum communications waveguided memory

® quantum metrology

® other quantum technologies

° 3 Lﬁl
. ° P
optical bus N
optical
interconnect

interface layer

On-chip circuits and active elements
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re Directions

Optical Silicon Quantum
Quant_um_ Quantum Quantum Resources &
Communication q q 5
Ci Ci Integration
Quantum crypto in the Multi-qubit gates Multi-qubit gates Quantum memory
Parliamentary Triangle Quantum circuits Spin qubit transport Photon sources
Q Si i pti il interface Photon detectors

quantum

silicon quantum processor

rep
Ultra-Secure Global Quantum Network
siAn~> QUANTUM COMPUTATION

COMMUNICATION TECHNOLOGY
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Future Directions

Role of Systems and Control Researchers
@ To develop holistic, systems-oriented concepts, theories, methods and
tools based on quantum mechanics (in place of classical mechanics)

@ Participate in the development of quantum technologies

...quantum mechanics as a science
has matured

...quantum engineering as a
technology is now emerging...

[Dowling-Milburn, 2003]
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Future Directions

Quantum feedback control

@ quantum feedback network modelling and analysis

o large scale quantum networks

e dynamical behavior

e quantum coherence and entanglement
e quantum - classical systems

o fully quantum coherent feedback design

e non-commutative variables and signals
o design by interconnection
e optimization
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Future Directions

"...the most fruitful areas for growth of sciences were those ...
between various established fields.’

‘It is these boundary regions of science which offer the richest
opportunities to the qualified investigator.’

Norbert Wiener, Cybernetics, 1948

it
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