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I. An Introduction to Boolean Network

+ Historical Review — Boolean Network

McCulloch and Pitts (1943): “the brain could be
modeled as a network of logical operations such
as and or not and so forth.”
Jacob and Monod (Nobel Prize winners)
(1961-1963): “Any cell contains a number of
‘regulatory’ genes that act as switches and can
turn one another on and off. ...then you can have
genetic circuits.” (M.M. Waldrop, Complexity, 1992)
Kauffman (1969): “The Boolean rules describing
the activities of different genes ...” (S. Kauffman,
At Home in the Universe,1994)
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+ Boolean Control Network

Ideker, et al (2001): “Gene-regulatory networks are
defined by trans and cis logic. · · · Both of these types
of regulatory networks have input and output.”
(Annu. Rev. Genomics Hum. Genet., 2001)
Akutsu, et al (2007): “One of the major goals of
systems biology is to develop a control theory for
complex biological systems.” (J. Theoretical Biology,
2007)

+ Some Other Applications
Dynamic Games;
Logic-based Control;
Cryptography and Secure Community;
Circuit Failure Detection, etc.
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Boolean Network
+ Network Graph

A B

C

Figure 1: A Boolean network

+ Network Dynamics
A(t + 1) = B(t) ∧ C(t)
B(t + 1) = ¬A(t)
C(t + 1) = B(t) ∨ C(t)

(1)
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Boolean Control Network
+ Network Graph

A

B

C

u1

u2

y

Figure 2: A Boolean control network

+ Network Dynamics
Its logical equation is

A(t + 1) = B(t) ∧ u1(t)
B(t + 1) = C(t) ∨ u2(t)
C(t + 1) = A(t)
y(t) = ¬C(t)

(2)
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+ Dynamics of Boolean Network


x1(t + 1) = f1(x1(t), · · · , xn(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t)), xi ∈ D,
(3)

where
D := {0, 1}.
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+ Dynamics of Boolean Control Network


x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...
xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
yj(t) = hj(x(t)), j = 1, · · · , p,

(4)

where xi, uk, yj ∈ D.
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Some Generalizations
+ k-valued and Mix-valued Logical Network

Boolean: xi ∈ D = {0, 1};
k-valued: xi ∈ Dk = {0, 1

k−1 , · · · , 1};
mix-valued: xi ∈ Dki.

(Example: For a game, player i has ki strategies.)

+ Probabilistic Boolean Network

fi =


f 1
i , P(fi = f 1

i ) = p1
i ;

...
f ki
i , P(fi = f ki

i ) = pki
i ,

(5)

where
ki∑

j=1

pj
i = 1, i = 1, · · · , n.
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II.1 Algebraic Form of Logic
+ Semi-tensor Product of Matrices

A ∈Mm×n, B ∈Mp×q, A× B =?

Definition 2.1.1
Let t = lcm{n, p}. Then the semi-tensor product (STP)
of A and B is defined as

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
(6)

Remark 2.1.2
It is a generalization of conventional matrix product
(CMP);
All the properties of the CMP remain true;
Pseudo-commutativity.
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+ Reference Book
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+ Some Notations:
δi

k: the i-th column of Ik;
∆k: {δ1

k , δ
2
k , · · · , δk

k}; ∆ := ∆2;
Lm×n: the set of logical matrices. A ∈ Lm×n means
A = [δi1

m δ
i2
m · · · δin

m]. Briefly denote it as

A = δm[i1 i2 · · · in].

+ Vector Form of Boolean Variables (Functions)
Setting Equivalence:

1 ∼ δ1
2 =

[
1
0

]
, 0 ∼ δ2

2 =

[
0
1

]
,

then xi ∈ ∆ and

f : Dn → D ⇒ f : ∆n → ∆.
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+ Algebraic Form of Boolean (Control) Networks

Theorem 2.1.3 (Cheng & Qi, IEEE TAC, 55(10), 2010)
Let F : Dn → Dm be determined by

yi = fi(x1, · · · , xn), i = 1, · · · ,m. (7)

Then in vector form we have

yi = Mi nn
j=1 xj := Mix, i = 1, · · · ,m, (8)

where Mi ∈ L2×2n. Moreover,

y := nm
k=1yk := MFx, (9)

where MF = M1 ∗ · · · ∗Mm ∈ L2m×2n . (∗: Khatri-Rao Prod.)
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+ Algebraic Form of Boolean (Control) Networks

Theorem 2.1.4 (Cheng & Qi, IEEE TAC, 55(10), 2010)
1 There exists a unique L ∈ L2n×2n such that (3) can be

expressed as

x(t + 1) = Lx(t), (10)

where x = nn
i=1xi.

2 There exist unique L ∈ L2n×2n+m and unique
H ∈ L2p×2n, such that (4) can be expressed as{

x(t + 1) = Lx(t)u(t)
y(t) = Hx(t),

(11)

where u = nm
i=1ui, y = np

i=1yi.
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Example

Example 2.1.4
Consider Boolean network (1) for Fig. 1. We have

L = δ8[3 7 7 8 1 5 5 6].

Consider Boolean control network (2) for Fig. 2. We
have

L = δ8[1 1 5 5 2 2 6 6 1 3 5 7 2 4 6 8
5 5 5 5 6 6 6 6 5 7 5 7 6 8 6 8];

H = δ2[2 1 2 1 2 1 2 1].
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II.2 State Space Approach

+ State Space and Subspace

Definition 2.2.1
Consider Boolean network (3)
(1) State space:

X = F`(x1, · · · , xn). (12)

(2) Subspace: Let y1, · · · , yk ∈ X .

Y = F`(y1, · · · , yk) ⊂ X . (13)

(3) Regular Subspace: Let {xi1 , · · · , xik} ⊂ {x1, · · · , xn}.

Z = F`(xi1 , · · · , xik). (14)
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+ Physical Meaning: Dual Space

In Rn, let {x1, x2, · · · , xn} be the coordinate frame.

To describe the state subspace generalized by
{xi1 , · · · , xik}, we may use the linear functions over this
subspace as

V∗ = {c1xi1 + · · ·+ ckxik |c1, · · · , ck ∈ R}.
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+ Coordinate Transformation

Definition 2.2.2
Let X = F`(x1, · · · , xn) be the state space of (3). Assume
there exist z1, · · · , zn ∈ X , such that

X = F`(z1, · · · , zn),

then the logical mapping T : (x1, · · · , xn) 7→ (z1, · · · , zn) is a
coordinate transformation.

Proposition 2.2.3
A mapping T : Dn → Dn is a coordinate transformation, if
and only if, T is bijective.
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+ Algebraic Form of Coordinate Transformation

Theorem 2.2.4 (Cheng & Qi, IEEE TNN, 21(4), 2010)
Assume z1, · · · , zn ∈ X , with

z1 = f1(x1, · · · , xn)
...

zn = fn(x1, · · · , xn).

(15)

Moreover, the algebraic form of (15) is

z = Tx, (16)

where z = nn
i=1zi, and x = nn

i=1xi, T ∈ L2n×2n. Then
π : (x1, · · · , xn) 7→ (z1, · · · , zn) is a coordinate
transformation, if and only if, T is nonsingular.
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+ Regular Subspace

Definition 2.2.5
Let Z0 = F`(z1, · · · , zk) ⊂ X . If there exist {zk+1, · · · , zn}
such that

X = F`(z1, · · · , zn),

then Z0 is a regular subspace.

Theorem 2.2.6 (Cheng & Qi, IEEE TNN, 21(4), 2010)
Let the algebraic form of Z0 be

z0 = Gx,

where G = [gi,j] ∈ L2k×2n. Then Z0 is a regular subspace, if
and only if,

2n∑
j=1

gi,j = 2n−k, i = 1, · · · , 2k. (17)
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III. Topological Structure of BN/BCN

+ Fix Points and Cycles

Theorem 3.1 (Cheng & Qi, IEEE TAC, 55(10), 2010)
Let the algebraic form of a Boolean network be

x(t + 1) = Lx(t). (18)

Then the number of cycles of length s (denoted by Ns) areN1 = tr(L),

Ns =
tr(Ls)−

∑
t∈P(s)

tNt

s , 2 ≤ s ≤ 2n.
(19)

There are similar formulas for BCN (Zhao & Cheng,
IEEE TAC, to appear.)
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+ Rolling Gear Structure

Theorem 3.2 (Cheng, IEEE TNN, 20(3), 2009)
If the network has cascading form as{

z1(t + 1) = F1(z1(t))
z2(t + 1) = F2(z1(t), z2(t)),

(20)

then

CZ = CZ1 ◦ CZ2 . (21)
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+ Rolling Gear Structure (V1 ⊂ V2 ⊂ V3 = X )

U1U2
1 U2

2

U3
1

U3
2

U3
3

U3
4

RGS explains why “tiny cycles decide vast
order”(Kaufman, At Home in the Universe)
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IV.1 Controllability, Observability, Realization

+ Controllability Matrix
Assume a Boolean control network has its algebraic form
as {

x(t + 1) = Lu(t)x(t)
y(t) = Hx(t).

(22)

Let

M =
2m∑

i=1

Blki(L).

Controllability Matrix

MC :=
2m+n∑
s=1

M(s) := (cij) ∈ B2n×2n . (23)
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+ Controllability

Theorem 4.1.1 (Zhao & Cheng, SCL, 59(12), 2010)
Consider Boolean control network (22).
(i) x0 = δj

2n ⇒ xd = δi
2n is reachable, iff, cij > 0;

(ii) (22) is controllable at x0 = δj
2n, iff, Colj(MC) > 0;

(iii) (22) is controllable, iff,MC > 0.

Related Works:

Controllability and Observability (Cheng & Qi,
Automatica, 45(7), 2009)
Realization (Cheng, Li & Qi, Automatica, 46(1),
2010)
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IV.2 Disturbance Decoupling Problem (DDP)
+ Network Model

x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t),
ξ1(t), · · · , ξq(t))

...
xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t),

ξ1(t), · · · , ξq(t)),
yj(t) = hj(x(t)), j = 1, · · · , p,

(24)

where ξi(t), i = 1, · · · , q are disturbances.

Definition 4.2.1
The DDP is: Finding, if possible, state feedback controls

ui(t) = gi(x1(t), · · · , xn(t)), i = 1, · · · ,m, (25)

such that for the closed-loop system the outputs are not
affected by the disturbances.
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+Y-friendly Subspace

Definition 4.2.2
Let Y = F`{y1, · · · , yp}. S ⊂ X is called the Y-friendly
subspace, if S is a regular subspace and

yi ∈ S, i = 1, · · · , p.

+Y-friendly Form

Proposition 4.2.3 (Cheng, IEEE TAC, 56(1), 2011)

Let S = F`{z2} be an Y-friendly subspace. Then we have
the follow Y-friendly Form:

z1(t + 1) = F1(z1(t), · · · , zn(t), u1(t), · · · , um(t),
ξ1(t), · · · , ξq(t))

z2(t + 1) = F2(z1(t), · · · , zn(t), u1(t), · · · , um(t),
ξ1(t), · · · , ξq(t)),

yj(t) = hj(z2(t)), j = 1, · · · , p.
(26)
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+ DDP Solvability

Theorem 4.2.4 (Cheng, IEEE TAC, 56(1), 2011)
Consider Boolean control network (24) with disturbances.
The disturbance decoupling problem is solvable, if and
only if,
(i) there exists a Y-friendly subspace with Y-friendly

form (26);
(ii) there exist state-feedback controls

ui(t) = φi(z(t)), i = 1, · · · ,m,

such that

F2(z1(t), · · · , zn(t), φ1(z(t)), · · · , φm(z(t)),
ξ1(t), · · · , ξq(t)) = F̃2(z2(t)).
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IV.3 Stability and Stabilization

Definition 4.3.1
1 The Boolean network (3) is stable, if there exists an

N > 0 such that xi(t) = const., t ≥ N, i = 1, · · · , n.
2 The Boolean control network (4) is stabilizable, if

there exists controls {ui} such that the closed-loop
network is stable. Particularly, if

ui = const., i = 1, · · · ,m, (27)

it is said to be stabilized by constant control; if

ui(t) = gi(x1(t), · · · , xn(t)), i = 1, · · · ,m, (28)

it is said to be stabilized by state feedback control.
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+ Constant Mapping

Definition 4.3.2
1 Let F : Dn → Dk be

zi = fi(x1, · · · , xn), i = 1, · · · , k.

F is called a constant mapping, if fi = const.,
i = 1, · · · , k.

2 A logical matrix, M, is called a constant mapping
matrix (CMM), if

Coli(M) = M0, ∀i.
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+ Constant Mapping⇔ Constant Matrix

Proposition 4.3.3

Let F : Dn → Dk be a constant mapping and its algebraic
form is

z = MFx, MF ∈ L2k×2n .

Then MF is a CMM.

+ Power-reducing Matrix

Φk :=
k∏

i=1

I2k−1 ⊗
[
(I2 ⊗W[2,2k−i]δ4[1, 4]

]
,

where W[m,n] is a swap matrix.
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+ Stability

Theorem 4.3.4 (Cheng, Qi, Li & Liu, IJRNC, 21(2), 2011)
The network (3) is stable if there exists a k ≤ n, such
that (I(F): incidence matrix)

[I(F)](k) = 0. (29)

The network (3) is stable if there exists a k ≤ 2n, such
that the system structure matrix satisfies that Lk is a
CMM. That is,

Coli(Lk) = M0, ∀i. (30)
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+ Stabilization

Theorem 4.3.5 (Cheng, Qi, Li & Liu, IJRNC, 21(2), 2011)
1 Define

L [I2m ⊗ L)Φm]k−1 :=
[
Lk

1 Lk
2 . . . Lk

2m

]
.

The network (4) is stablizable by constant constrols, if
and only if, there exists at least a
Lk

j , 1 ≤ k ≤ 2n, 1 ≤ j ≤ 2m, which is a CMM.
2 The network (4) is stablizable by state feedback

controls u = Gx, if and only if, there exists a
1 ≤ k ≤ 2n, such that (LGΦn)

k is a CMM.
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IV.4 Optimal Control of BCN

+ Problem Formulation

Definition 4.4.1
Consider the Boolean control network (4). The payoff
function is assumed to be

p(t) = P(x(t), u(t)), t = 1, 2, · · · .

The optimization problem is: Finding, if possible, an
optimal control sequence, which maximize the average
payoff

J(u) = lim
T→∞

1
T

T∑
t=1

P(x(t), u(t)). (31)
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+ Optimal Control

Theorem 4.4.2 (Zhao & Cheng, IEEE TAC, to appear)
Consider Boolean control network (4). There exists an
optimal control u∗(t) of the form

u∗1(t + 1) = g1(x1(t), · · · , xn(t), u∗1(t), · · · , u∗n(t))
...

u∗m(t + 1) = gm(x1(t), · · · , xn(t), u∗1(t), · · · , u∗n(t)),

(32)

which maximize (31). Moreover, the corresponding
optimal trajectory w∗(t) = u∗(t)x∗(t) becomes periodic after
finite steps.

The key issue is to calculate the cycles for BCN (refer
to: Zhao & Cheng, IEEE TAC, to appear)
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IV.5 Identification of BN/BCN
+ Identification of BN

Observed data:

{X(0),X(1), · · · ,X(N)}.

Network:

xi(t + 1) = fi(x1(t), · · · , xn(t)), i = 1, · · · , n. (33)

Component-wise algebraic form:

xi(t + 1) = Mix(t), i = 1, · · · , n, (34)

where Mi ∈ L2×2n.
Purpose: Identify Mi, i = 1, · · · , n.
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+ Identifying Column

Theorem 4.5.1 (Cheng, Qi & Li, IEEE TNN, 22(4), 2011)

Let x(t) = δj
2n and xi(t + 1) = δk

2. Then

Colj(Mi) = δk
2. (35)

Assume we have partly identified structure matrices Mi,
i = 1, · · · , n.
Define

Mi,j := MiW[2,2j−1], j = 1, 2, · · · , n. (36)

Then split it into two equal-size blocks as

Mi,j =
[
M1

i,j M2
i,j

]
. (37)
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+ Least In-degree Model

Theorem 4.5.2 (Cheng, Qi & Li, IEEE TNN, 22(4), 2011)
fi has a realization which is independent of xj, if and only if

M1
i,j = M2

i,j (38)

has solution for unidentified columns.

Using (38), we can find a least in-degree realization.
Identification of BCN: Refer to Cheng & Zhao,
Automatica, 47(4), 2011.
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Example 9.3
Observed Data:

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Partly identified structure matrix:

M1 = δ2[∗ 2 ∗ ∗ ∗ ∗ ∗ 1 ∗ 2 ∗ 2 ∗ ∗ ∗ 1]
M2 = δ2[∗ 1 ∗ ∗ ∗ ∗ ∗ 1 ∗ 1 ∗ 2 ∗ ∗ ∗ 2]
M3 = δ2[∗ 1 ∗ ∗ ∗ ∗ ∗ 1 ∗ 2 ∗ 2 ∗ ∗ ∗ 2]
M4 = δ2[∗ 1 ∗ ∗ ∗ ∗ ∗ 2 ∗ 2 ∗ 2 ∗ ∗ ∗ 2].
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Example 9.3 (Cont’d)
Lease In-degree Realization:

x1 x2

x3 x4


x1(t + 1) = ¬x2(t),
x2(t + 1) = x4(t) ∨ x1(t),
x3(t + 1) = x1(t), x4(t + 1) = x3(t)∨̄x4(t).

(39)
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+ Reference Book
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V. Concluding Remarks
+ Conclusion

Boolean network is a proper model for cellular
networks;
Semi-tensor Product:

Logical Dynamics⇒ Discrete-time Dynamics;

State space/subspaces:

Control Theory(applicable)⇒ Systems Biology.

Control Problems Considered: Controllability,
Observability, Realization, DDP, Stabilization, Optimal
control, Identification, etc.
There are many open problems, and several follow
up papers (IEEE TAC, Automatica, IEEE TNN ...,
CCC Invited Session)
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+ Topics for Further Study

Properties and control of probabilistic Boolean
networks;
Application to general biological systems (size
problem);

Multi-agent Boolean network (Metabolic network:
module + network motif)
Protein network (self similar, scale-free network)

Dynamic games with finite strategies and finite
memories;
Fuzzy control (Fuzzy relational equations);
Logic-based control;
Cryptography, Coding by Boolean function, Secure
community;
Circuit Design, Failure Detection, etc.
· · ·
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Thank you!

Question?
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