Synthesis of Boolean Networks via Semi-tensor Product

Daizhan Cheng

Institute of Systems Science, Academy of Mathematics and Systems Science Chinese Academy of Sciences

> Joint work with Hongsheng Qi, Zhiqiang Li, Yin Zhao, et al.

The 30th Chinese Control Conference Yantai, China, July 22, 2011

Outline

An Introduction to Boolean Network

Two Key Tools of Our Approach

- Algebraic Form of Logic
- State Space Approach
- 3 Analysis of BN/BCN
 - Topological Structure of BN/BCN
 - Control of BN/BCN
 - Controllability, Observability, Realization
 - Disturbance Decoupling Problem
 - Stability and Stabilization
 - Optimal Control of BCN
 - Identification of BN/BCN

I. An Introduction to Boolean Network

Boolean Network

- McCulloch and Pitts (1943): "the brain could be modeled as a network of logical operations such as and or not and so forth."
- Jacob and Monod (Nobel Prize winners) (1961-1963): "Any cell contains a number of 'regulatory' genes that act as switches and can turn one another on and off. ...then you can have genetic circuits." (M.M. Waldrop, *Complexity*, 1992)
- Kauffman (1969): "The Boolean rules describing the activities of different genes ..." (S. Kauffman, At Home in the Universe, 1994)

Boolean Control Network

- Ideker, et al (2001): "Gene-regulatory networks are defined by trans and cis logic. · · · Both of these types of regulatory networks have input and output." (Annu. Rev. Genomics Hum. Genet., 2001)
- Akutsu, et al (2007): "One of the major goals of systems biology is to develop a control theory for complex biological systems." (*J. Theoretical Biology*, 2007)
- Some Other Applications
 - Dynamic Games;
 - Logic-based Control;
 - Cryptography and Secure Community;
 - Circuit Failure Detection, etc.

Boolean Network

Retwork Graph

Figure 1: A Boolean network

Retwork Dynamics

$$\begin{cases}
A(t+1) = B(t) \land C(t) \\
B(t+1) = \neg A(t) \\
C(t+1) = B(t) \lor C(t)
\end{cases}$$
(1)

Boolean Control Network

Retwork Graph

Figure 2: A Boolean control network

Retwork Dynamics

Its logical equation is

$$\begin{cases}
A(t+1) = B(t) \land u_1(t) \\
B(t+1) = C(t) \lor u_2(t) \\
C(t+1) = A(t) \\
y(t) = \neg C(t)
\end{cases}$$
(2)

Solean Network

$$\begin{cases} x_1(t+1) = f_1(x_1(t), \cdots, x_n(t)) \\ \vdots \\ x_n(t+1) = f_n(x_1(t), \cdots, x_n(t)), \quad x_i \in \mathcal{D}, \end{cases}$$
(3)

where

 $\mathcal{D} := \{0,1\}.$

Dynamics of Boolean Control Network

$$\begin{cases} x_1(t+1) = f_1(x_1(t), \cdots, x_n(t), u_1(t), \cdots, u_m(t)) \\ \vdots \\ x_n(t+1) = f_n(x_1(t), \cdots, x_n(t), u_1(t), \cdots, u_m(t)), \\ y_j(t) = h_j(x(t)), \quad j = 1, \cdots, p, \end{cases}$$
(4)

where $x_i, u_k, y_j \in \mathcal{D}$.

Some Generalizations

k-valued and Mix-valued Logical Network

- Boolean: $x_i \in D = \{0, 1\};$
- *k*-valued: $x_i \in \mathcal{D}_k = \{0, \frac{1}{k-1}, \cdots, 1\};$
- mix-valued: $x_i \in \mathcal{D}_{k_i}$.

(Example: For a game, player *i* has k_i strategies.)

Probabilistic Boolean Network

$$f_{i} = \begin{cases} f_{i}^{1}, & P(f_{i} = f_{i}^{1}) = p_{i}^{1}; \\ \vdots \\ f_{i}^{k_{i}}, & P(f_{i} = f_{i}^{k_{i}}) = p_{i}^{k_{i}}, \end{cases}$$
(5)

where

$$\sum_{j=1}^{k_i} p_i^j = 1, \quad i = 1, \cdots, n.$$

Outline

II.1 Algebraic Form of Logic

Semi-tensor Product of Matrices

$$A \in \mathcal{M}_{m \times n}, \quad B \in \mathcal{M}_{p \times q}, \quad A \times B = ?$$

Definition 2.1.1

Let $t = \text{lcm}\{n, p\}$. Then the **semi-tensor product** (STP) of *A* and *B* is defined as

$$A \ltimes B := (A \otimes I_{t/n}) (B \otimes I_{t/p})$$
(6)

Remark 2.1.2

- It is a generalization of conventional matrix product (CMP);
- All the properties of the CMP remain true;
- Pseudo-commutativity.

Reference Book

Some Notations:

• δ_k^i : the *i*-th column of I_k ;

•
$$\Delta_k$$
: { $\delta_k^1, \delta_k^2, \cdots, \delta_k^k$ }; $\Delta := \Delta_2$;

• $\mathcal{L}_{m \times n}$: the set of logical matrices. $A \in \mathcal{L}_{m \times n}$ means $A = [\delta_m^{i_1} \delta_m^{i_2} \cdots \delta_m^{i_n}]$. Briefly denote it as

$$A = \delta_m[i_1 \ i_2 \ \cdots \ i_n].$$

Vector Form of Boolean Variables (Functions) Setting Equivalence:

$$1 \sim \delta_2^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad 0 \sim \delta_2^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

then $x_i \in \Delta$ and

$$f: \mathcal{D}^n \to \mathcal{D} \quad \Rightarrow f: \Delta^n \to \Delta$$

Representation of Boolean (Control) Networks

Theorem 2.1.3 (Cheng & Qi, IEEE TAC, 55(10), 2010)

Let $F: \mathcal{D}^n \to \mathcal{D}^m$ be determined by

$$y_i = f_i(x_1, \cdots, x_n), \quad i = 1, \cdots, m.$$
 (7)

Then in vector form we have

$$y_i = M_i \ltimes_{j=1}^n x_j := M_i x, \quad i = 1, \cdots, m,$$
 (8)

where $M_i \in \mathcal{L}_{2 \times 2^n}$. Moreover,

$$y := \ltimes_{k=1}^{m} y_k := M_F x, \tag{9}$$

where $M_F = M_1 * \cdots * M_m \in \mathcal{L}_{2^m \times 2^n}$. (*: Khatri-Rao Prod.)

Repraic Form of Boolean (Control) Networks

Theorem 2.1.4 (Cheng & Qi, IEEE TAC, 55(10), 2010)

• There exists a unique $L \in \mathcal{L}_{2^n \times 2^n}$ such that (3) can be expressed as

$$x(t+1) = Lx(t),$$
 (10)

where $x = \ltimes_{i=1}^{n} x_i$.

2 There exist unique $L \in \mathcal{L}_{2^n \times 2^{n+m}}$ and unique $H \in \mathcal{L}_{2^p \times 2^n}$, such that (4) can be expressed as

$$\begin{cases} x(t+1) = Lx(t)u(t) \\ y(t) = Hx(t), \end{cases}$$
(11)

where $u = \ltimes_{i=1}^{m} u_i$, $y = \ltimes_{i=1}^{p} y_i$.

Example

Example 2.1.4

• Consider Boolean network (1) for Fig. 1. We have

 $L = \delta_8 [3 \ 7 \ 7 \ 8 \ 1 \ 5 \ 6].$

Consider Boolean control network (2) for Fig. 2. We have

$$\begin{array}{rcl} L &=& \delta_8 [1 \ 1 \ 5 \ 5 \ 2 \ 2 \ 6 \ 6 \ 1 \ 3 \ 5 \ 7 \ 2 \ 4 \ 6 \ 8 \\ && 5 \ 5 \ 5 \ 5 \ 6 \ 6 \ 6 \ 6 \ 5 \ 7 \ 5 \ 7 \ 6 \ 8 \ 6 \ 8]; \\ H &=& \delta_2 [2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1]. \end{array}$$

Outline

An Introduction to Boolean Network

- Two Key Tools of Our Approach
 - Algebraic Form of Logic
 - State Space Approach
- Analysis of BN/BCN
 - Topological Structure of BN/BCN
- Control of BN/BCN
 - Controllability, Observability, Realization
 - Disturbance Decoupling Problem
 - Stability and Stabilization
 - Optimal Control of BCN
 - Identification of BN/BCN
- Concluding Remarks

II.2 State Space Approach

State Space and Subspace

Definition 2.2.1

Consider Boolean network (3)

(1) State space:

$$\mathcal{X} = F_{\ell}(x_1, \cdots, x_n). \tag{12}$$

(2) Subspace: Let $y_1, \dots, y_k \in \mathcal{X}$.

$$\mathcal{Y} = F_{\ell}(y_1, \cdots, y_k) \subset \mathcal{X}.$$
 (13)

(3) Regular Subspace: Let $\{x_{i_1}, \cdots, x_{i_k}\} \subset \{x_1, \cdots, x_n\}$.

$$\mathcal{Z} = F_{\ell}(x_{i_1}, \cdots, x_{i_k}). \tag{14}$$

Physical Meaning: Dual Space

In \mathbb{R}^n , let $\{x_1, x_2, \dots, x_n\}$ be the coordinate frame. To describe the state subspace generalized by $\{x_{i_1}, \dots, x_{i_k}\}$, we may use the linear functions over this subspace as

$$V^* = \{c_1 x_{i_1} + \dots + c_k x_{i_k} | c_1, \dots, c_k \in \mathbb{R}\}.$$

Coordinate Transformation

Definition 2.2.2

Let $\mathcal{X} = F_{\ell}(x_1, \cdots, x_n)$ be the state space of (3). Assume there exist $z_1, \cdots, z_n \in \mathcal{X}$, such that

$$\mathcal{X}=F_\ell(z_1,\cdots,z_n),$$

then the logical mapping $T : (x_1, \dots, x_n) \mapsto (z_1, \dots, z_n)$ is a **coordinate transformation**.

Proposition 2.2.3

A mapping $T : \mathcal{D}^n \to \mathcal{D}^n$ is a coordinate transformation, if and only if, *T* is bijective.

Representation Algebraic Form of Coordinate Transformation

Theorem 2.2.4 (Cheng & Qi, IEEE TNN, 21(4), 2010)

Assume $z_1, \cdots, z_n \in \mathcal{X}$, with

$$\begin{cases} z_1 = f_1(x_1, \cdots, x_n) \\ \vdots \\ z_n = f_n(x_1, \cdots, x_n). \end{cases}$$
(15)

Moreover, the algebraic form of (15) is

$$z = Tx, \tag{16}$$

where $z = \ltimes_{i=1}^{n} z_i$, and $x = \ltimes_{i=1}^{n} x_i$, $T \in \mathcal{L}_{2^n \times 2^n}$. Then $\pi : (x_1, \dots, x_n) \mapsto (z_1, \dots, z_n)$ is a coordinate transformation, if and only if, *T* is nonsingular.

Regular Subspace

Definition 2.2.5

Let $\mathcal{Z}_0 = F_{\ell}(z_1, \cdots, z_k) \subset \mathcal{X}$. If there exist $\{z_{k+1}, \cdots, z_n\}$ such that

$$\mathcal{X}=F_\ell(z_1,\cdots,z_n),$$

then \mathcal{Z}_0 is a **regular subspace**.

Theorem 2.2.6 (Cheng & Qi, IEEE TNN, 21(4), 2010)

Let the algebraic form of \mathcal{Z}_0 be

$$z^0 = Gx,$$

where $G = [g_{i,j}] \in \mathcal{L}_{2^k \times 2^n}$. Then \mathcal{Z}_0 is a regular subspace, if and only if,

$$\sum_{j=1}^{2^{n}} g_{i,j} = 2^{n-k}, \quad i = 1, \cdots, 2^{k}.$$
(17)

Outline

Algebraic Form of Logic State Space Approach **Analysis of BN/BCN** 3 Topological Structure of BN/BCN Control of BN/BCN Controllability, Observability, Realization Disturbance Decoupling Problem Stability and Stabilization **Optimal Control of BCN** Identification of BN/BCN **Concluding Remarks**

III. Topological Structure of BN/BCN

IN Fix Points and Cycles

Theorem 3.1 (Cheng & Qi, IEEE TAC, 55(10), 2010)

Let the algebraic form of a Boolean network be

$$x(t+1) = Lx(t).$$
 (18)

Then the number of cycles of length s (denoted by N_s) are

$$\begin{cases} N_1 = \operatorname{tr}(L), \\ N_s = \frac{\operatorname{tr}(L^s) - \sum\limits_{t \in \mathcal{P}(s)} tN_t}{s}, \quad 2 \le s \le 2^n. \end{cases}$$
(19)

 There are similar formulas for BCN (Zhao & Cheng, IEEE TAC, to appear.)

Rolling Gear Structure

Theorem 3.2 (Cheng, IEEE TNN, 20(3), 2009)

If the network has cascading form as

$$\begin{cases} z^{1}(t+1) = F^{1}(z^{1}(t)) \\ z^{2}(t+1) = F^{2}(z^{1}(t), z^{2}(t)), \end{cases}$$
(20)

then

$$C_Z = C_{Z^1} \circ C_{Z^2}.$$
 (21)

Rolling Gear Structure ($V_1 \subset V_2 \subset V_3 = \mathcal{X}$)

 RGS explains why "tiny cycles decide vast order" (Kaufman, At Home in the Universe)

Outline

 Algebraic Form of Logic State Space Approach **Analysis of BN/BCN** Topological Structure of BN/BCN **Control of BN/BCN** Controllability, Observability, Realization Disturbance Decoupling Problem Stability and Stabilization **Optimal Control of BCN** Identification of BN/BCN **Concluding Remarks**

IV.1 Controllability, Observability, Realization

Controllability Matrix

Assume a Boolean control network has its algebraic form as

$$\begin{cases} x(t+1) = Lu(t)x(t) \\ y(t) = Hx(t). \end{cases}$$
(22)

Let

$$M = \sum_{i=1}^{2^m} \operatorname{Blk}_i(L).$$

Controllability Matrix

$$\mathcal{M}_{\mathcal{C}} := \sum_{s=1}^{2^{m+n}} M^{(s)} := (c_{ij}) \in \mathcal{B}_{2^n \times 2^n}.$$
 (23)

Controllability

Theorem 4.1.1 (Zhao & Cheng, SCL, 59(12), 2010)

Consider Boolean control network (22).

(i)
$$x^0 = \delta^j_{2^n} \Rightarrow x^d = \delta^i_{2^n}$$
 is reachable, iff, $c_{ij} > 0$;

(ii) (22) is controllable at $x^0 = \delta_{2^n}^j$, iff, $\operatorname{Col}_j(\mathcal{M}_{\mathcal{C}}) > 0$;

(iii) (22) is controllable, iff, $\mathcal{M}_{\mathcal{C}} > 0$.

Related Works:

- Controllability and Observability (Cheng & Qi, Automatica, 45(7), 2009)
- Realization (Cheng, Li & Qi, Automatica, 46(1), 2010)

Outline

 Algebraic Form of Logic State Space Approach **Analysis of BN/BCN** Topological Structure of BN/BCN **Control of BN/BCN** Controllability, Observability, Realization Disturbance Decoupling Problem Stability and Stabilization **Optimal Control of BCN** Identification of BN/BCN **Concluding Remarks**

IV.2 Disturbance Decoupling Problem (DDP)

Retwork Model

$$\begin{cases} x_{1}(t+1) = f_{1}(x_{1}(t), \cdots, x_{n}(t), u_{1}(t), \cdots, u_{m}(t), \\ \xi_{1}(t), \cdots, \xi_{q}(t)) \\ \vdots \\ x_{n}(t+1) = f_{n}(x_{1}(t), \cdots, x_{n}(t), u_{1}(t), \cdots, u_{m}(t), \\ \xi_{1}(t), \cdots, \xi_{q}(t)), \\ y_{j}(t) = h_{j}(x(t)), \quad j = 1, \cdots, p, \end{cases}$$
(24)

where $\xi_i(t)$, $i = 1, \cdots, q$ are disturbances.

Definition 4.2.1

The DDP is: Finding, if possible, state feedback controls

$$u_i(t) = g_i(x_1(t), \cdots, x_n(t)), \quad i = 1, \cdots, m,$$
 (25)

such that for the closed-loop system the outputs are not affected by the disturbances.

$\mathbb{R} \mathcal{Y}$ -friendly Subspace

Definition 4.2.2

Let $\mathcal{Y} = F_{\ell}\{y_1, \cdots, y_p\}$. $\mathcal{S} \subset \mathcal{X}$ is called the \mathcal{Y} -friendly subspace, if \mathcal{S} is a regular subspace and

$$y_i \in \mathcal{S}, \quad i=1,\cdots,p.$$

 \mathbb{R} \mathcal{Y} -friendly Form

Proposition 4.2.3 (Cheng, IEEE TAC, 56(1), 2011)

Let $S = F_{\ell}\{z^2\}$ be an \mathcal{Y} -friendly subspace. Then we have the follow \mathcal{Y} -friendly Form:

$$\begin{cases} z^{1}(t+1) = F_{1}(z_{1}(t), \cdots, z_{n}(t), u_{1}(t), \cdots, u_{m}(t), \\ \xi_{1}(t), \cdots, \xi_{q}(t)) \\ z^{2}(t+1) = F_{2}(z_{1}(t), \cdots, z_{n}(t), u_{1}(t), \cdots, u_{m}(t), \\ \xi_{1}(t), \cdots, \xi_{q}(t)), \\ y_{j}(t) = h_{j}(z^{2}(t)), \quad j = 1, \cdots, p. \end{cases}$$
(26)

DDP Solvability

Theorem 4.2.4 (Cheng, IEEE TAC, 56(1), 2011)

Consider Boolean control network (24) with disturbances. The disturbance decoupling problem is solvable, if and only if,

- (i) there exists a *Y*-friendly subspace with *Y*-friendly form (26);
- (ii) there exist state-feedback controls

$$u_i(t) = \phi_i(z(t)), \quad i = 1, \cdots, m,$$

such that

$$F_2(z_1(t), \cdots, z_n(t), \phi_1(z(t)), \cdots, \phi_m(z(t)))$$

$$\xi_1(t), \cdots, \xi_q(t)) = \tilde{F}_2(z^2(t)).$$

Outline

 Algebraic Form of Logic State Space Approach **Analysis of BN/BCN** Topological Structure of BN/BCN **Control of BN/BCN** Controllability, Observability, Realization Stability and Stabilization **Optimal Control of BCN** Identification of BN/BCN **Concluding Remarks**

IV.3 Stability and Stabilization

Definition 4.3.1

- The Boolean network (3) is stable, if there exists an N > 0 such that $x_i(t) = \text{const.}, t \ge N, i = 1, \dots, n$.
- The Boolean control network (4) is stabilizable, if there exists controls {*u_i*} such that the closed-loop network is stable. Particularly, if

$$u_i = \text{const.}, \quad i = 1, \cdots, m,$$
 (27)

it is said to be stabilized by constant control; if

$$u_i(t) = g_i(x_1(t), \cdots, x_n(t)), \quad i = 1, \cdots, m,$$
 (28)

it is said to be stabilized by state feedback control.

Constant Mapping

Definition 4.3.2

• Let $F: \mathcal{D}^n \to \mathcal{D}^k$ be

$$z_i = f_i(x_1, \cdots, x_n), \quad i = 1, \cdots, k.$$

F is called a **constant mapping**, if $f_i = \text{const.}$, $i = 1, \dots, k$.

 A logical matrix, *M*, is called a constant mapping matrix (CMM), if

$$\operatorname{Col}_i(M) = M_0, \quad \forall i.$$

Constant Mapping Constant Matrix

Proposition 4.3.3

Let $F: \mathcal{D}^n \to \mathcal{D}^k$ be a constant mapping and its algebraic form is

$$z = M_F x, \quad M_F \in \mathcal{L}_{2^k \times 2^n}.$$

Then M_F is a CMM.

Power-reducing Matrix

$$\Phi_k := \prod_{i=1}^k I_{2^{k-1}} \otimes \left[(I_2 \otimes W_{[2,2^{k-i}]} \delta_4[1,4] \right],$$

where $W_{[m,n]}$ is a swap matrix.

Stability

Theorem 4.3.4 (Cheng, Qi, Li & Liu, IJRNC, 21(2), 2011)

The network (3) is stable if there exists a k ≤ n, such that (𝒯(𝑘): incidence matrix)

$$[\mathcal{I}(F)]^{(k)} = 0.$$
 (29)

 The network (3) is stable if there exists a k ≤ 2ⁿ, such that the system structure matrix satisfies that L^k is a CMM. That is,

$$\operatorname{Col}_i(L^k) = M_0, \quad \forall i.$$
 (30)

Stabilization

Theorem 4.3.5 (Cheng, Qi, Li & Liu, IJRNC, 21(2), 2011)

Define

$$L[I_{2^m}\otimes L)\Phi_m]^{k-1}:=\left[L_1^k L_2^k \ldots L_{2^m}^k\right].$$

The network (4) is stablizable by constant constrols, if and only if, there exists at least a L_i^k , $1 \le k \le 2^n$, $1 \le j \le 2^m$, which is a CMM.

The network (4) is stablizable by state feedback controls *u* = *Gx*, if and only if, there exists a 1 ≤ k ≤ 2ⁿ, such that (*LG*Φ_n)^k is a CMM.

Outline

IV.4 Optimal Control of BCN

Problem Formulation

Definition 4.4.1

Consider the Boolean control network (4). The payoff function is assumed to be

$$p(t) = P(x(t), u(t)), \quad t = 1, 2, \cdots.$$

The optimization problem is: Finding, if possible, an optimal control sequence, which maximize the average payoff

$$J(u) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} P(x(t), u(t)).$$
(31)

Optimal Control

Theorem 4.4.2 (Zhao & Cheng, IEEE TAC, to appear)

Consider Boolean control network (4). There exists an optimal control $u^*(t)$ of the form

$$\begin{cases} u_1^*(t+1) = g_1(x_1(t), \cdots, x_n(t), u_1^*(t), \cdots, u_n^*(t)) \\ \vdots \\ u_m^*(t+1) = g_m(x_1(t), \cdots, x_n(t), u_1^*(t), \cdots, u_n^*(t)), \end{cases}$$
(32)

which maximize (31). Moreover, the corresponding optimal trajectory $w^*(t) = u^*(t)x^*(t)$ becomes periodic after finite steps.

 The key issue is to calculate the cycles for BCN (refer to: Zhao & Cheng, IEEE TAC, to appear)

Outline

 Algebraic Form of Logic State Space Approach **Analysis of BN/BCN** Topological Structure of BN/BCN **Control of BN/BCN** Controllability, Observability, Realization Disturbance Decoupling Problem Stability and Stabilization **Optimal Control of BCN** Identification of BN/BCN **Concluding Remarks**

IV.5 Identification of BN/BCN

Identification of BN

Observed data:

 $\{X(0), X(1), \cdots, X(N)\}.$

Network:

$$x_i(t+1) = f_i(x_1(t), \cdots, x_n(t)), \quad i = 1, \cdots, n.$$
 (33)

• Component-wise algebraic form:

$$x_i(t+1) = M_i x(t), \quad i = 1, \cdots, n,$$
 (34)

where $M_i \in \mathcal{L}_{2 \times 2^n}$.

• Purpose: Identify M_i , $i = 1, \cdots, n$.

Identifying Column

 Theorem 4.5.1 (Cheng, Qi & Li, IEEE TNN, 22(4), 2011)

 Let $x(t) = \delta_{2^n}^j$ and $x_i(t+1) = \delta_2^k$. Then

 $\operatorname{Col}_j(M_i) = \delta_2^k$.

 (35)

Assume we have partly identified structure matrices M_i , $i = 1, \cdots, n$. Define

$$M_{i,j} := M_i W_{[2,2^{j-1}]}, \quad j = 1, 2, \cdots, n.$$
 (36)

Then split it into two equal-size blocks as

$$M_{i,j} = \begin{bmatrix} M_{i,j}^1 & M_{i,j}^2 \end{bmatrix}.$$
(37)

Least In-degree Model

Theorem 4.5.2 (Cheng, Qi & Li, IEEE TNN, 22(4), 2011)

 f_i has a realization which is independent of x_i , if and only if

$$M_{i,j}^1 = M_{i,j}^2$$
(38)

has solution for unidentified columns.

- Using (38), we can find a least in-degree realization.
- Identification of BCN: Refer to Cheng & Zhao, Automatica, 47(4), 2011.

Example 9.3

Observed Data:

Partly identified structure matrix:

$$\begin{array}{rcl} M_1 &=& \delta_2[*\ 2\ *\ *\ *\ *\ *\ 1\ *\ 2\ *\ 2\ *\ *\ *\ 1] \\ M_2 &=& \delta_2[*\ 1\ *\ *\ *\ *\ 1\ *\ 1\ *\ 2\ *\ *\ *\ 2] \\ M_3 &=& \delta_2[*\ 1\ *\ *\ *\ *\ *\ 1\ *\ 2\ *\ 2\ *\ *\ *\ 2] \\ M_4 &=& \delta_2[*\ 1\ *\ *\ *\ *\ *\ 2\ *\ 2\ *\ 2\ *\ *\ *\ 2]. \end{array}$$

Example 9.3 (Cont'd)

Lease In-degree Realization:

$$\begin{cases} x_1(t+1) = \neg x_2(t), \\ x_2(t+1) = x_4(t) \lor x_1(t), \\ x_3(t+1) = x_1(t), x_4(t+1) = x_3(t) \bar{\lor} x_4(t). \end{cases}$$
(39)

Reference Book

V. Concluding Remarks

Conclusion

- Boolean network is a proper model for cellular networks;
- Semi-tensor Product:

Logical Dynamics \Rightarrow Discrete-time Dynamics;

• State space/subspaces:

Control Theory(applicable) \Rightarrow Systems Biology.

- Control Problems Considered: Controllability, Observability, Realization, DDP, Stabilization, Optimal control, Identification, etc.
- There are many open problems, and several follow up papers (IEEE TAC, Automatica, IEEE TNN ..., CCC Invited Session)

Topics for Further Study

- Properties and control of probabilistic Boolean networks;
- Application to general biological systems (size problem);
 - Multi-agent Boolean network (Metabolic network: module + network motif)
 - Protein network (self similar, scale-free network)
- Dynamic games with finite strategies and finite memories;
- Fuzzy control (Fuzzy relational equations);
- Logic-based control;
- Cryptography, Coding by Boolean function, Secure community;
- Circuit Design, Failure Detection, etc.

o . . .

Thank you!

Question?